Review on DFT calculation of <i>s</i>‐triazine‐based carbon nitride

Carbon Energy - Tập 1 Số 1 - Trang 32-56 - 2019
Bicheng Zhu1, Bei Cheng1, Liuyang Zhang1, Jiaguo Yu2,1
1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
2School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China

Tóm tắt

AbstractTo improve the photocatalytic performance of pristine photocatalysts, element doping, construction of composites and fabrication of novel nanostructures are recognized as universal modification methods. These methods have been experimentally verified to be effective in manifold photocatalytic application over various photocatalysts. Density functional theory (DFT) calculation is a powerful and fundamental tool to pinpoint the intrinsic mechanism of the enhanced photocatalytic activity. And it holds the degree of precision ranging from atoms, molecules to unit cells. Herein, recent DFT calculation research progress of modified s‐triazine‐based graphitic carbon nitride (g–C3N4) systems as photocatalysts is summarized. To specify, we collected information of doping site, formation energy, geometric, and electronic properties. We also discussed the synergistic effect of work function, Fermi level and band edge position on the built‐in electric field, transfer route of photogenerated charge carriers and photocatalytic mechanism (traditional type II or direct Z‐scheme heterostructure). Moreover, we analyzed the geometric configuration, band structure, and stability of g–C3N4 nanocluster, nanoribbon, and nanotube. Finally, future perspective in the further theoretical revelation of g–C3N4‐based photocatalysts is proposed.

Từ khóa


Tài liệu tham khảo

10.1016/j.jphotochemrev.2017.02.001

10.1038/238037a0

10.1016/j.apsusc.2016.09.093

10.1002/adma.201807660

10.1039/C7EE03640J

10.1002/cctc.201802024

10.1016/j.jallcom.2017.08.142

10.1016/j.powtec.2017.05.022

10.1002/aenm.201701503

10.1002/cctc.201801206

10.1016/j.scib.2017.12.013

10.1016/S1010-6030(03)00077-7

10.1016/j.apcatb.2017.06.003

10.1016/j.apcatb.2018.03.054

10.1016/j.cep.2015.08.006

10.1016/j.jphotochemrev.2016.04.002

10.1016/j.apsusc.2016.09.136

10.1039/C6TA06628C

10.1016/j.apsusc.2018.06.034

10.3866/PKU.WHXB201606222

10.1039/C4TC01239A

10.1016/j.apcatb.2018.07.022

10.1002/adma.201802981

10.1016/j.jcou.2017.07.021

10.1039/C4CP02021A

10.1021/jacs.6b02692

10.1021/acs.jpcc.8b00098

10.1039/c3cs60388a

10.1007/s00214-006-0191-4

10.1016/j.apcatb.2016.03.058

10.1016/j.apcatb.2015.07.031

10.1016/j.cplett.2016.12.008

Qie J, 2016, Research of photocatalyst g‐C3N4 using first principles, Prog Chem, 28, 1569

10.1038/nmat2317

10.1039/c2ee03479d

10.1002/anie.201101182

10.1021/cs300240x

10.1016/j.jphotochemrev.2016.06.001

10.1016/j.apsusc.2016.07.154

10.1016/j.tsf.2018.06.017

10.1103/PhysRevB.87.085202

10.1021/jp507372n

10.1021/acscatal.8b02459

10.1016/j.apcatb.2017.11.025

10.1016/j.jallcom.2016.02.094

10.3866/PKU.WHXB201311082

10.1016/j.apsusc.2017.09.019

10.1016/j.ijhydene.2012.04.138

10.1039/c3nr06104c

10.3866/PKU.WHXB201603032

10.1016/j.solener.2018.01.056

10.1016/j.apsusc.2015.07.180

10.3866/PKU.WHXB201604292

10.1016/j.comptc.2016.11.004

10.1021/cm504265w

10.1039/C4TA00275J

10.1016/j.ssc.2014.11.017

10.1016/j.apsusc.2016.07.104

10.1016/j.apsusc.2015.08.250

10.1016/j.commatsci.2017.03.030

10.1039/C6CP06147H

10.1016/j.commatsci.2013.08.015

10.1039/C7TC05087A

10.1016/j.materresbull.2015.02.044

10.1039/C5TA05503B

10.3938/jkps.69.1445

10.1002/cctc.201701823

10.1103/PhysRevB.97.195428

10.1016/j.vacuum.2014.02.015

10.1016/j.apsusc.2017.06.306

10.1039/C6CP02169G

10.1088/0953-8984/25/8/085507

10.1021/jp308334x

10.1016/j.matchemphys.2015.05.036

10.1039/c2cc32181e

10.1039/C5CP03794H

10.1016/j.apsusc.2018.07.015

10.1016/j.apcatb.2017.02.020

10.1016/j.apsusc.2015.09.009

10.1016/j.materresbull.2018.08.021

10.1016/j.matlet.2017.10.112

10.1016/j.apsusc.2016.06.019

10.1016/j.physleta.2009.05.046

10.1021/acs.jpcc.5b07572

10.1016/j.apcatb.2017.01.034

10.1039/C6CP08409E

10.1016/j.mattod.2018.04.008

10.1016/j.apcatb.2016.09.055

10.1039/c3cp53131g

10.1016/j.ijhydene.2017.02.172

10.1021/acs.jpcc.5b09092

10.1016/j.apsusc.2017.11.259

10.1039/C4CP06089J

10.1088/1361-6528/aace20

10.1016/j.physe.2018.04.023

10.1039/C8TA07352J

10.1021/acs.jpcc.7b07914

10.1039/C6RA12980C

10.1016/j.jphotochem.2018.06.012

10.1002/solr.201800006

10.1016/j.apsusc.2017.08.086

10.1002/cctc.201800369

10.1007/s10853-018-2111-0

10.1016/j.jallcom.2018.07.041

10.1016/j.apcatb.2018.11.011

10.1039/c2jm34965e

10.1039/C6CP02832B

10.1016/j.apsusc.2018.02.105

10.1016/j.jcat.2017.02.005

10.1021/jp200953k

10.1039/C4CC00745J

10.1039/C5CS00064E

10.1002/aenm.201502352

10.1039/c3ra44490b

10.1039/C6RA23218C

10.1039/b311390f

10.1039/c2nr30777d

10.1103/PhysRevB.82.195405

10.1103/PhysRevB.58.13918

10.1002/pssb.201451110

10.1039/C4RA15034A