Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0
Bard, 1979, J. Photochem., 10, 59, 10.1016/0047-2670(79)80037-4
Bard, 1980, Science, 207, 139, 10.1126/science.207.4427.139
Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013
Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G
Maeda, 2010, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966
Kubacka, 2011, Chem. Rev., 112, 1555, 10.1021/cr100454n
Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D
Photoelectrochemical Water Splitting, ed. H.-J. Lewerenz and L. Peter, The Royal Society of Chemistry, 2013, pp. P001–468
T. K.
Townsend
, Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water, Springer Science & Business Media, 2014
Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896
Wallace, 1947, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622
Özçelik, 2013, J. Phys. Chem. C, 117, 2175, 10.1021/jp3111869
Li, 2010, Chem. Commun., 46, 3256, 10.1039/b922733d
Malko, 2012, Phys. Rev. Lett., 108, 086804, 10.1103/PhysRevLett.108.086804
Takeda, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 50, 14916, 10.1103/PhysRevB.50.14916
Aufray, 2010, Appl. Phys. Lett., 96, 183102, 10.1063/1.3419932
Piazza, 2014, Nat. Commun., 5, 3113, 10.1038/ncomms4113
A.
Szabo
and N. S.Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory, Courier Corporation, 2012
I. N.
Levine
, Quantum chemistry, Pearson Higher Ed, 2013
Hohenberg, 1964, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Kohn, 1965, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Woodley, 2008, Nat. Mater., 7, 937, 10.1038/nmat2321
Lejaeghere, 2016, Science, 351, 3000, 10.1126/science.aad3000
Singh, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 89, 245431, 10.1103/PhysRevB.89.245431
Zhang, 2015, Angew. Chem., Int. Ed., 54, 3112, 10.1002/anie.201411246
Liu, 2014, J. Mater. Chem. A, 2, 6755, 10.1039/c3ta15431a
Eames, 2014, J. Am. Chem. Soc., 136, 16270, 10.1021/ja508154e
Zhou, 2014, Phys. Rev. Lett., 112, 085502, 10.1103/PhysRevLett.112.085502
Revard, 2016, Phys. Rev. B: Condens. Matter Mater. Phys., 93, 054117, 10.1103/PhysRevB.93.054117
Singer, 2005, Phys. Rev. Lett., 94, 135701, 10.1103/PhysRevLett.94.135701
Li, 2015, Inorg. Chem., 54, 8969, 10.1021/acs.inorgchem.5b01030
Jiang, 2015, J. Mater. Chem. A, 3, 7750, 10.1039/C4TA03438D
Wang, 2015, J. Phys.: Condens. Matter, 28, 034004
Xu, 2016, Nanoscale, 8568, 10.1039/C5NR07663C
Perdew, 1981, Phys. Rev. B: Condens. Matter Mater. Phys., 23, 5048, 10.1103/PhysRevB.23.5048
Vosko, 1980, Can. J. Phys., 58, 1200, 10.1139/p80-159
Perdew, 1992, Phys. Rev. B: Condens. Matter Mater. Phys., 45, 13244, 10.1103/PhysRevB.45.13244
Harris, 1974, J. Phys. F: Met. Phys., 4, 1170, 10.1088/0305-4608/4/8/013
Langreth, 1975, Solid State Commun., 17, 1425, 10.1016/0038-1098(75)90618-3
Gunnarsson, 1976, Phys. Rev. B: Solid State, 13, 4274, 10.1103/PhysRevB.13.4274
Harris, 1979, Int. J. Quantum Chem., 16, 189, 10.1002/qua.560160821
Harris, 1984, Phys. Rev. A: At., Mol., Opt. Phys., 29, 1648, 10.1103/PhysRevA.29.1648
Becke, 1988, Phys. Rev. A: At., Mol., Opt. Phys., 38, 3098, 10.1103/PhysRevA.38.3098
Langreth, 1983, Phys. Rev. B: Condens. Matter Mater. Phys., 28, 1809, 10.1103/PhysRevB.28.1809
Muscat, 2001, Chem. Phys. Lett., 342, 397, 10.1016/S0009-2614(01)00616-9
Heyd, 2005, J. Chem. Phys., 123, 174101, 10.1063/1.2085170
Grimme, 2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Grimme, 2011, WIREs Comput. Mol. Sci., 1, 211, 10.1002/wcms.30
Dion, 2004, Phys. Rev. Lett., 92, 246401, 10.1103/PhysRevLett.92.246401
Román-Pérez, 2009, Phys. Rev. Lett., 103, 096102, 10.1103/PhysRevLett.103.096102
Björkman, 2012, Phys. Rev. Lett., 108, 235502, 10.1103/PhysRevLett.108.235502
Li, 2013, EPL, 103, 28007, 10.1209/0295-5075/103/28007
Splendiani, 2010, Nano Lett., 10, 1271, 10.1021/nl903868w
Robinson, 2015, 2D Mater., 2, 015005, 10.1088/2053-1583/2/1/015005
Li, 2013, Catal. Sci. Technol., 3, 2214, 10.1039/c3cy00207a
Liang, 2013, Appl. Phys. Lett., 103, 042106, 10.1063/1.4816517
Beal, 1979, J. Phys. C: Solid State Phys., 12, 881, 10.1088/0022-3719/12/5/017
Molina-Sánchez, 2016, Phys. Rev. B, 93, 155435, 10.1103/PhysRevB.93.155435
Mak, 2010, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Sa, 2014, J. Phys. Chem. C, 118, 26560, 10.1021/jp508618t
Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Heyd, 2003, J. Chem. Phys., 118, 8207, 10.1063/1.1564060
Cheiwchanchamnangij, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 205302, 10.1103/PhysRevB.85.205302
Reshak, 2003, Phys. Rev. B: Condens. Matter Mater. Phys., 68, 125101, 10.1103/PhysRevB.68.125101
Salpeter, 1951, Phys. Rev., 84, 1232, 10.1103/PhysRev.84.1232
Ramasubramaniam, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 86, 115409, 10.1103/PhysRevB.86.115409
Qiu, 2013, Phys. Rev. Lett., 111, 216805, 10.1103/PhysRevLett.111.216805
Fan, 2016, Nat. Commun., 7, 11981, 10.1038/ncomms11981
Coleman, 2011, Science, 331, 568, 10.1126/science.1194975
Zhuang, 2013, Chem. Mater., 25, 3232, 10.1021/cm401661x
Zacharia, 2004, Phys. Rev. B: Condens. Matter Mater. Phys., 69, 155406, 10.1103/PhysRevB.69.155406
Cahangirov, 2009, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804
Li, 2014, Comput. Mater. Sci., 92, 206, 10.1016/j.commatsci.2014.05.033
Kang, 2013, Appl. Phys. Lett., 102, 012111, 10.1063/1.4774090
Mak, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 14999, 10.1073/pnas.1004595107
Zhu, 2011, Phys. Rev. B: Condens. Matter Mater. Phys., 84, 153402, 10.1103/PhysRevB.84.153402
Cheng, 2013, EPL, 102, 57001, 10.1209/0295-5075/102/57001
Xiao, 2012, Phys. Rev. Lett., 108, 196802, 10.1103/PhysRevLett.108.196802
Zeng, 2012, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95
Mak, 2012, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96
Yuan, 2013, Nat. Phys., 9, 563, 10.1038/nphys2691
Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317
Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617
Maitra, 2013, Angew. Chem., Int. Ed., 52, 13057, 10.1002/anie.201306918
Gupta, 2014, APL Mater., 2, 092802, 10.1063/1.4892976
Mahler, 2014, J. Am. Chem. Soc., 136, 14121, 10.1021/ja506261t
Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172
Garg, 2016, J. Phys. Chem. C, 120, 7052, 10.1021/acs.jpcc.6b01622
Lahiri, 2008, J. Phys. Chem. C, 112, 4304, 10.1021/jp7114109
Yu, 2014, ACS Appl. Mater. Interfaces, 6, 22370, 10.1021/am506396z
Zhong, 2012, J. Phys. Chem. C, 116, 9319, 10.1021/jp301024d
Dou, 2015, Science, 349, 1518, 10.1126/science.aac7660
Zhang, 2016, Angew. Chem., 128, 1698, 10.1002/ange.201507568
Denk, 2014, ACS Nano, 8, 3947, 10.1021/nn500867y
Liu, 2014, J. Chem. Phys., 140, 054707, 10.1063/1.4863695
Lei, 2003, Chem. Commun., 2142, 10.1039/b306813g
Xu, 2012, RSC Adv., 2, 3458, 10.1039/c2ra01159j
Yu, 2010, J. Phys. Chem. C, 114, 13118, 10.1021/jp104488b
H.
De Lasa
and B.Serrano-Rosales, Advances in Chemical Engineering: Photocatalytic Technologies, Academic Press, 2009, vol. 36
Ni, 2008, ACS Nano, 2, 2301, 10.1021/nn800459e
Fei, 2014, Nano Lett., 14, 2884, 10.1021/nl500935z
Rodin, 2014, Phys. Rev. Lett., 112, 176801, 10.1103/PhysRevLett.112.176801
Lee, 2008, Science, 321, 385, 10.1126/science.1157996
Wei, 2014, Appl. Phys. Lett., 104, 251915, 10.1063/1.4885215
Elahi, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 91, 115412, 10.1103/PhysRevB.91.115412
Peng, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 085402, 10.1103/PhysRevB.90.085402
Plechinger, 2015, 2D Mater., 2, 015006, 10.1088/2053-1583/2/1/015006
Bertolazzi, 2011, ACS Nano, 5, 9703, 10.1021/nn203879f
Qin, 1992, Ultramicroscopy, 42–44, 630, 10.1016/0304-3991(92)90334-G
Álvarez, 2015, Nano Lett., 15, 3139, 10.1021/acs.nanolett.5b00229
Hwang, 2005, J. Phys. Chem. B, 109, 2093, 10.1021/jp0493226
Guo, 2014, Int. J. Hydrogen Energy, 39, 2042, 10.1016/j.ijhydene.2013.11.055
Zou, 2015, Nano Lett., 15, 3495, 10.1021/acs.nanolett.5b00864
Sun, 2015, Chem. Soc. Rev., 44, 623, 10.1039/C4CS00236A
Ataca, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 195410, 10.1103/PhysRevB.85.195410
Tay, 2015, Chem. Mater., 27, 4930, 10.1021/acs.chemmater.5b02344
Kuc, 2015, Chem. Soc. Rev., 44, 2603, 10.1039/C4CS00276H
Nozik, 1996, J. Phys. Chem. Lett., 100, 13061
Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e
Kamat, 2012, J. Phys. Chem. Lett., 3, 663, 10.1021/jz201629p
Wang, 2013, Appl. Catal., B, 134, 293, 10.1016/j.apcatb.2013.01.013
Lin, 2007, J. Phys. Chem. C, 111, 18288, 10.1021/jp073955d
Jiang, 2016, Sci. Rep., 6, 22727, 10.1038/srep22727
P.
Kulis
, J.Butikova, B.Polyakov, G.Marcins, J.Pervenecka, K.Pudzs and I.Tale, IOP CONF., 2012, p. 012048
Bhanu, 2014, Sci. Rep., 4, 5575, 10.1038/srep05575
Bumajdad, 2014, Phys. Chem. Chem. Phys., 16, 7146, 10.1039/c3cp54411g
Awazu, 2008, J. Am. Chem. Soc., 130, 1676, 10.1021/ja076503n
Wang, 2015, Nanotechnology, 26, 105709, 10.1088/0957-4484/26/10/105709
Sun, 2014, Chem. – Eur. J., 20, 10414, 10.1002/chem.201402424
Qian, 2012, J. Nanopart. Res., 14, 1, 10.1007/s11051-012-0895-4
Shiga, 2016, Chem. Commun., 52, 7470, 10.1039/C6CC03199D
Linghu, 2016, Appl. Phys. Lett., 108, 122105, 10.1063/1.4944642
Liao, 2014, J. Phys. Chem. C, 118, 17594, 10.1021/jp5038014
Wang, 2016, 2D Mater., 3, 025011, 10.1088/2053-1583/3/2/025011