Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective

Catalysis Science and Technology - Tập 7 Số 3 - Trang 545-559
Yunguo Li1,2,3,4,5, Yanling Li6,3,4,5, Baisheng Sa7,8,3, Rajeev Ahuja9,10,11,12
1Crystallography and Mineral Physics
2Crystallography and Mineral Physics, Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
3People's Republic of China
4School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, People’s Republic of China
5Xuzhou
6Jiangsu Normal University
7College of Materials Science and Engineering, Fuzhou University, People's Republic of China
8Fuzhou University
9Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
10Department of Physics and Astronomy
11Sweden
12Uppsala 75120

Tóm tắt

Two-dimensional (2D) materials have shown extraordinary performances as photocatalysts compared to their bulk counterparts.

Từ khóa


Tài liệu tham khảo

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Bard, 1979, J. Photochem., 10, 59, 10.1016/0047-2670(79)80037-4

Bard, 1980, Science, 207, 139, 10.1126/science.207.4427.139

Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Maeda, 2010, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966

Kubacka, 2011, Chem. Rev., 112, 1555, 10.1021/cr100454n

Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D

Photoelectrochemical Water Splitting, ed. H.-J. Lewerenz and L. Peter, The Royal Society of Chemistry, 2013, pp. P001–468

T. K. Townsend , Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water, Springer Science & Business Media, 2014

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Wallace, 1947, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622

Özçelik, 2013, J. Phys. Chem. C, 117, 2175, 10.1021/jp3111869

Li, 2010, Chem. Commun., 46, 3256, 10.1039/b922733d

Malko, 2012, Phys. Rev. Lett., 108, 086804, 10.1103/PhysRevLett.108.086804

Takeda, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 50, 14916, 10.1103/PhysRevB.50.14916

Aufray, 2010, Appl. Phys. Lett., 96, 183102, 10.1063/1.3419932

Piazza, 2014, Nat. Commun., 5, 3113, 10.1038/ncomms4113

A. Szabo and N. S.Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory, Courier Corporation, 2012

I. N. Levine , Quantum chemistry, Pearson Higher Ed, 2013

Hohenberg, 1964, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

Kohn, 1965, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

Woodley, 2008, Nat. Mater., 7, 937, 10.1038/nmat2321

Lejaeghere, 2016, Science, 351, 3000, 10.1126/science.aad3000

Singh, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 89, 245431, 10.1103/PhysRevB.89.245431

Zhang, 2015, Angew. Chem., Int. Ed., 54, 3112, 10.1002/anie.201411246

Liu, 2014, J. Mater. Chem. A, 2, 6755, 10.1039/c3ta15431a

Eames, 2014, J. Am. Chem. Soc., 136, 16270, 10.1021/ja508154e

Zhou, 2014, Phys. Rev. Lett., 112, 085502, 10.1103/PhysRevLett.112.085502

Revard, 2016, Phys. Rev. B: Condens. Matter Mater. Phys., 93, 054117, 10.1103/PhysRevB.93.054117

Singer, 2005, Phys. Rev. Lett., 94, 135701, 10.1103/PhysRevLett.94.135701

Li, 2015, Inorg. Chem., 54, 8969, 10.1021/acs.inorgchem.5b01030

Jiang, 2015, J. Mater. Chem. A, 3, 7750, 10.1039/C4TA03438D

Wang, 2015, J. Phys.: Condens. Matter, 28, 034004

Xu, 2016, Nanoscale, 8568, 10.1039/C5NR07663C

Perdew, 1981, Phys. Rev. B: Condens. Matter Mater. Phys., 23, 5048, 10.1103/PhysRevB.23.5048

Vosko, 1980, Can. J. Phys., 58, 1200, 10.1139/p80-159

Perdew, 1992, Phys. Rev. B: Condens. Matter Mater. Phys., 45, 13244, 10.1103/PhysRevB.45.13244

Harris, 1974, J. Phys. F: Met. Phys., 4, 1170, 10.1088/0305-4608/4/8/013

Langreth, 1975, Solid State Commun., 17, 1425, 10.1016/0038-1098(75)90618-3

Gunnarsson, 1976, Phys. Rev. B: Solid State, 13, 4274, 10.1103/PhysRevB.13.4274

Harris, 1979, Int. J. Quantum Chem., 16, 189, 10.1002/qua.560160821

Harris, 1984, Phys. Rev. A: At., Mol., Opt. Phys., 29, 1648, 10.1103/PhysRevA.29.1648

Becke, 1988, Phys. Rev. A: At., Mol., Opt. Phys., 38, 3098, 10.1103/PhysRevA.38.3098

Langreth, 1983, Phys. Rev. B: Condens. Matter Mater. Phys., 28, 1809, 10.1103/PhysRevB.28.1809

Muscat, 2001, Chem. Phys. Lett., 342, 397, 10.1016/S0009-2614(01)00616-9

Heyd, 2005, J. Chem. Phys., 123, 174101, 10.1063/1.2085170

Grimme, 2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495

Grimme, 2011, WIREs Comput. Mol. Sci., 1, 211, 10.1002/wcms.30

Dion, 2004, Phys. Rev. Lett., 92, 246401, 10.1103/PhysRevLett.92.246401

Román-Pérez, 2009, Phys. Rev. Lett., 103, 096102, 10.1103/PhysRevLett.103.096102

Björkman, 2012, Phys. Rev. Lett., 108, 235502, 10.1103/PhysRevLett.108.235502

Li, 2013, EPL, 103, 28007, 10.1209/0295-5075/103/28007

Splendiani, 2010, Nano Lett., 10, 1271, 10.1021/nl903868w

Robinson, 2015, 2D Mater., 2, 015005, 10.1088/2053-1583/2/1/015005

Li, 2013, Catal. Sci. Technol., 3, 2214, 10.1039/c3cy00207a

Liang, 2013, Appl. Phys. Lett., 103, 042106, 10.1063/1.4816517

Beal, 1979, J. Phys. C: Solid State Phys., 12, 881, 10.1088/0022-3719/12/5/017

Molina-Sánchez, 2016, Phys. Rev. B, 93, 155435, 10.1103/PhysRevB.93.155435

Mak, 2010, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

Sa, 2014, J. Phys. Chem. C, 118, 26560, 10.1021/jp508618t

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Heyd, 2003, J. Chem. Phys., 118, 8207, 10.1063/1.1564060

Cheiwchanchamnangij, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 205302, 10.1103/PhysRevB.85.205302

Reshak, 2003, Phys. Rev. B: Condens. Matter Mater. Phys., 68, 125101, 10.1103/PhysRevB.68.125101

Salpeter, 1951, Phys. Rev., 84, 1232, 10.1103/PhysRev.84.1232

Ramasubramaniam, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 86, 115409, 10.1103/PhysRevB.86.115409

Qiu, 2013, Phys. Rev. Lett., 111, 216805, 10.1103/PhysRevLett.111.216805

Fan, 2016, Nat. Commun., 7, 11981, 10.1038/ncomms11981

Coleman, 2011, Science, 331, 568, 10.1126/science.1194975

Zhuang, 2013, Chem. Mater., 25, 3232, 10.1021/cm401661x

Zacharia, 2004, Phys. Rev. B: Condens. Matter Mater. Phys., 69, 155406, 10.1103/PhysRevB.69.155406

Cahangirov, 2009, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804

Li, 2014, Comput. Mater. Sci., 92, 206, 10.1016/j.commatsci.2014.05.033

Kang, 2013, Appl. Phys. Lett., 102, 012111, 10.1063/1.4774090

Mak, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 14999, 10.1073/pnas.1004595107

Zhu, 2011, Phys. Rev. B: Condens. Matter Mater. Phys., 84, 153402, 10.1103/PhysRevB.84.153402

Cheng, 2013, EPL, 102, 57001, 10.1209/0295-5075/102/57001

Xiao, 2012, Phys. Rev. Lett., 108, 196802, 10.1103/PhysRevLett.108.196802

Zeng, 2012, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95

Mak, 2012, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96

Yuan, 2013, Nat. Phys., 9, 563, 10.1038/nphys2691

Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317

Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617

Maitra, 2013, Angew. Chem., Int. Ed., 52, 13057, 10.1002/anie.201306918

Gupta, 2014, APL Mater., 2, 092802, 10.1063/1.4892976

Mahler, 2014, J. Am. Chem. Soc., 136, 14121, 10.1021/ja506261t

Chen, 2015, Angew. Chem., Int. Ed., 54, 1210, 10.1002/anie.201410172

Garg, 2016, J. Phys. Chem. C, 120, 7052, 10.1021/acs.jpcc.6b01622

Lahiri, 2008, J. Phys. Chem. C, 112, 4304, 10.1021/jp7114109

Yu, 2014, ACS Appl. Mater. Interfaces, 6, 22370, 10.1021/am506396z

Zhong, 2012, J. Phys. Chem. C, 116, 9319, 10.1021/jp301024d

Dou, 2015, Science, 349, 1518, 10.1126/science.aac7660

Zhang, 2016, Angew. Chem., 128, 1698, 10.1002/ange.201507568

Denk, 2014, ACS Nano, 8, 3947, 10.1021/nn500867y

Liu, 2014, J. Chem. Phys., 140, 054707, 10.1063/1.4863695

Lei, 2003, Chem. Commun., 2142, 10.1039/b306813g

Xu, 2012, RSC Adv., 2, 3458, 10.1039/c2ra01159j

Yu, 2010, J. Phys. Chem. C, 114, 13118, 10.1021/jp104488b

H. De Lasa and B.Serrano-Rosales, Advances in Chemical Engineering: Photocatalytic Technologies, Academic Press, 2009, vol. 36

Ni, 2008, ACS Nano, 2, 2301, 10.1021/nn800459e

Fei, 2014, Nano Lett., 14, 2884, 10.1021/nl500935z

Rodin, 2014, Phys. Rev. Lett., 112, 176801, 10.1103/PhysRevLett.112.176801

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Wei, 2014, Appl. Phys. Lett., 104, 251915, 10.1063/1.4885215

Elahi, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 91, 115412, 10.1103/PhysRevB.91.115412

Peng, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 085402, 10.1103/PhysRevB.90.085402

Plechinger, 2015, 2D Mater., 2, 015006, 10.1088/2053-1583/2/1/015006

Bertolazzi, 2011, ACS Nano, 5, 9703, 10.1021/nn203879f

Qin, 1992, Ultramicroscopy, 42–44, 630, 10.1016/0304-3991(92)90334-G

Álvarez, 2015, Nano Lett., 15, 3139, 10.1021/acs.nanolett.5b00229

Hwang, 2005, J. Phys. Chem. B, 109, 2093, 10.1021/jp0493226

Guo, 2014, Int. J. Hydrogen Energy, 39, 2042, 10.1016/j.ijhydene.2013.11.055

Zou, 2015, Nano Lett., 15, 3495, 10.1021/acs.nanolett.5b00864

Sun, 2015, Chem. Soc. Rev., 44, 623, 10.1039/C4CS00236A

Ataca, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 195410, 10.1103/PhysRevB.85.195410

Tay, 2015, Chem. Mater., 27, 4930, 10.1021/acs.chemmater.5b02344

Kuc, 2015, Chem. Soc. Rev., 44, 2603, 10.1039/C4CS00276H

Nozik, 1996, J. Phys. Chem. Lett., 100, 13061

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Kamat, 2012, J. Phys. Chem. Lett., 3, 663, 10.1021/jz201629p

Wang, 2013, Appl. Catal., B, 134, 293, 10.1016/j.apcatb.2013.01.013

Lin, 2007, J. Phys. Chem. C, 111, 18288, 10.1021/jp073955d

Jiang, 2016, Sci. Rep., 6, 22727, 10.1038/srep22727

P. Kulis , J.Butikova, B.Polyakov, G.Marcins, J.Pervenecka, K.Pudzs and I.Tale, IOP CONF., 2012, p. 012048

Bhanu, 2014, Sci. Rep., 4, 5575, 10.1038/srep05575

Bumajdad, 2014, Phys. Chem. Chem. Phys., 16, 7146, 10.1039/c3cp54411g

Awazu, 2008, J. Am. Chem. Soc., 130, 1676, 10.1021/ja076503n

Wang, 2015, Nanotechnology, 26, 105709, 10.1088/0957-4484/26/10/105709

Sun, 2014, Chem. – Eur. J., 20, 10414, 10.1002/chem.201402424

Qian, 2012, J. Nanopart. Res., 14, 1, 10.1007/s11051-012-0895-4

Shiga, 2016, Chem. Commun., 52, 7470, 10.1039/C6CC03199D

Linghu, 2016, Appl. Phys. Lett., 108, 122105, 10.1063/1.4944642

Liao, 2014, J. Phys. Chem. C, 118, 17594, 10.1021/jp5038014

Wang, 2016, 2D Mater., 3, 025011, 10.1088/2053-1583/3/2/025011