Review of the basics of state of the art of blast loading
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arora, H., Hooper, P., Linz, P., Yang, H., Dear, J. (2016). Modelling the behaviour of composite sandwich structures when subject to air-blast loading. The International Journal of Multiphysics, 6, 1212–1228.
Beshara, F. (1994). Modelling of blast loading on aboveground structures—I. General phenomenology and external blast. Computers & Structures, 51, 585–596.
Castedo, R., Segarra, P., Alañon, A., Lopez, L., Santos, A., & Sanchidrian, J. (2015). Air blast resistance of full-scale slabs with different compositions: numerical modeling and field validation. International Journal of Impact Engineering, 86, 145–156.
Cullis, I. (2001). Blast waves and how they interact with structures. Journal of the Royal Army Medical Corps, 147, 16–26.
Dewey, J. M. (2010). The shape of the blast wave: studies of the Friedlander equation. 21st International Symposium on Military Aspects of Blast and Shock (MABS), Israel, 2010.
Dvoinishnikov, A., Dorofeev, S., Gelfand, B. (1995). Analysis of blast wave data from HE explosions. In Shock waves@ Marseille IV. Berlin: Springer.
Esparza, E. D. (1986). Blast measurements and equivalency for spherical charges at small scaled distances. International Journal of Impact Engineering, 4, 23–40.
FEMA-426/BIPS. (2011). Buildings and infrastructure protection series, reference manual to mitigate potential terrorist attacks against buildings.
Fordham, S. (2013). High explosives and propellants. New York: Elsevier.
Hale, G. C. (1935). Explosive. Google Patents.
Hyde, D. (1991). CONWEP: Conventional weapons effects program. USA: US Army Engineer Waterways Experiment Station.
Hyde, D. (2004). ConWep 2.1. 0.8 [Computer software]. Vicksburg: US Army Engineer Research & Development Center.
Karlos, V. (2013). Calculation of blast loads for application to structural components. Report EUR 26456 EN. European Commission.
Keshavarz, M. H. (2005). Simple procedure for determining heats of detonation. Thermochimica Acta, 428, 95–99.
Khandelwal, M., & Singh, T. (2009). Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences, 46, 1214–1222.
Kingery, C. N. (1966). Air blast parameters versus distance for hemispherical TNT surface bursts. DTIC Document.
Kinney, G. F., & Graham, K. J. (2013). Explosive shocks in air. Berlin: Springer.
Larcher, M., & Casadei, F. (2010). Explosions in complex geometries—a comparison of several approaches. International journal of protective structures, 1, 169–195.
Lin, X., Zhang, Y., & Hazell, P. J. (2014). Modelling the response of reinforced concrete panels under blast loading. Materials and Design, 1980–2015(56), 620–628.
Michel, L., Herbeck, D., & Telles, G. (2001). American terrorist: Timothy McVeigh and the Oklahoma city bombing. New York: Regan Books.
Mosca, L., Karimi Behzad, S., & Anzenbacher, J. R. P. (2015). Small-molecule turn-on fluorescent probes for RDX. Journal of the American Chemical Society, 137, 7967–7969.
Năstăsescu, V. & Bârsan G. (2013). Modern approaches in numerical calculus of the effects of explosions on structures.
Neuberger, A., Peles, S., & Rittel, D. (2007). Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading. International Journal of Impact Engineering, 34, 859–873.
Ngo, T., Mendis, P., Gupta, A., & Ramsay, J. (2007a). Blast loading and blast effects on structures—an overview. Electronic Journal of Structural Engineering, 7, 76–91.
Ngo, T., Mendis, P., & Krauthammer, T. (2007b). Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading. Journal of Structural Engineering, 133, 1582–1590.
Pichandi, S., Rana, S., Oliveira, D., & Fangueiro, R. (2013). Fibrous and composite materials for blast protection of structural elements—A state-of-the-art review. Journal of Reinforced Plastics and Composites, 32, 1477–1500.
Pouretedal, H. R., Damiri, S., Ravanbod, M., Haghdost, M., & Masoudi, S. (2017). The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods. Journal of Thermal Analysis and Calorimetry, 129, 521–529.
Remennikov, A. M. (2003). A review of methods for predicting bomb blast effects on buildings. Journal of Battlefield Technology, 6, 5.
Sabatini, J. J., & Oyler, K. D. (2015). Recent advances in the synthesis of high explosive materials. Crystals, 6, 5.
Shi, Y., Hao, H., & Li, Z.-X. (2008). Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads. International Journal of Impact Engineering, 35, 1213–1227.
Shi, Y., Li, Z.-X., & Hao, H. (2010). A new method for progressive collapse analysis of RC frames under blast loading. Engineering Structures, 32, 1691–1703.
Shi, Y., & Stewart, M. G. (2015). Damage and risk assessment for reinforced concrete wall panels subjected to explosive blast loading. International Journal of Impact Engineering, 85, 5–19.
Sochet, I. (2010) Blast effects of external explosions. Eighth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, 2010.
Stewart, M. G., Netherton, M. D., & Rosowsky, D. V. (2006). Terrorism risks and blast damage to built infrastructure. Natural Hazards Review, 7, 114–122.
Wharton, R., Formby, S., & Merrifield, R. (2000). Airblast TNT equivalence for a range of commercial blasting explosives. Journal of Hazardous Materials, 79, 31–39.
Yan, B., Liu, F., Song, D., & Jiang, Z. (2015). Numerical study on damage mechanism of RC beams under close-in blast loading. Engineering Failure Analysis, 51, 9–19.