Review of selective laser melting: Materials and applications

Applied Physics Reviews - Tập 2 Số 4 - 2015
Chor Yen Yap1,2,3, Chee Kai Chua4,1,2, Zhili Dong5,4,6, Z. H. Liu4,1,2, D. Q. Zhang4,1,2, L. E. Loh4,1,2, Swee Leong Sing4,1,2
13School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798
2Nanyang Technological University 1 Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, , 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798
3Nanyang Technological University 2 Energy Research Institute @ NTU, Interdisciplinary Graduate School, , 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798
42Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798
51Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798
6Nanyang Technological University 3 School of Materials Science & Engineering, , 50 Nanyang Avenue, Block N4.1, Singapore 639798

Tóm tắt

Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

Từ khóa


Tài liệu tham khảo

W. Meiners, K. D. Wissenbach, and A. D. Gasser, “Shaped body especially prototype or replacement part production,” U.S. patent DE19649849C1 (1998).

S. Das and J. J. Beaman, “Direct selective laser sintering of metals,” U.S. patent US6676892B2 (2004).

2014, 3D Printing and Additive Manufacturing: Principles and Applications, 4th ed., 518

2007, Int. J. Mech. Mater. Des., 4, 181, 10.1007/s10999-007-9032-4

2014, Metall. Mater. Trans. B, 45, 2247, 10.1007/s11663-014-0117-9

2014, Metall. Mater. Trans. B, 45, 2279, 10.1007/s11663-014-0183-z

2015, Adv. Eng. Mater., 17, 942, 10.1002/adem.201400589

2015, Metall. Mater. Trans. A, 46, 3864, 10.1007/s11661-015-2912-6

2011, Int. J. Adv. Manuf. Technol., 59, 1025, 10.1007/s00170-011-3566-1

2014, Intermetallics, 46, 147, 10.1016/j.intermet.2013.11.012

2003, Adv. Eng. Mater., 5, 701, 10.1002/adem.200310099

2000, Rapid Prototyping J., 6, 155, 10.1108/13552540010337029

2003, Acta Mater., 51, 1651, 10.1016/S1359-6454(02)00567-0

2002, Int. J. Adv. Manuf. Technol., 19, 351, 10.1007/s001700200024

2005, Int. J. Heat Mass Transfer, 48, 3423, 10.1016/j.ijheatmasstransfer.2005.01.044

2014, Virtual Phys. Prototyping, 9, 11, 10.1080/17452759.2013.869608

2015, Int. J. Heat Mass Transfer, 80, 288, 10.1016/j.ijheatmasstransfer.2014.09.014

2010, Rapid Prototyping J., 16, 248, 10.1108/13552541011049261

2011, Rapid Prototyping J., 17, 195, 10.1108/13552541111124770

2011, International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference, 227

2004, Rapid Prototyping J., 10, 78, 10.1108/13552540410526953

2004, J. Mater. Process. Technol., 149, 616, 10.1016/j.jmatprotec.2003.11.051

2013

2015, Virtual Phys. Prototyping, 10, 67, 10.1080/17452759.2015.1026045

2004, CIRP Ann., 53, 195, 10.1016/S0007-8506(07)60677-5

2010, 695

2010, Phys. Proc., 5, 587, 10.1016/j.phpro.2010.08.086

2001, J. Mater. Process. Technol., 111, 210, 10.1016/S0924-0136(01)00522-2

2005, Manufacture of Stainless Steel Parts by Selective Laser Melting Process, 431

2010, Int. J. Adv. Manuf. Technol., 51, 639, 10.1007/s00170-010-2631-5

2004, CIRP Ann., 53, 191, 10.1016/S0007-8506(07)60676-3

2005, Proc. Inst. Mech. Eng., Part B, 219, 339, 10.1243/095440505X8109

2005, Proc. Inst. Mech. Eng., Part B, 219, 379, 10.1243/095440505X32201

2007, Int. J. Mach. Tools Manuf., 47, 779, 10.1016/j.ijmachtools.2006.09.013

2009, Proc. Inst. Mech. Eng., Part B, 223, 1409, 10.1243/09544054JEM1574

2008, 1535

2005, Digital Manufacturing of Biocompatible Metal Frameworks for Complex Dental Prostheses by Means of SLS/SLM, 139

2005, CARS: Computer Assisted Radiology and Surgery, 690

2011, Equipment Manufacturing Technology and Automation, 174

2007, H7320

2012, Rapid Prototyping J., 18, 482, 10.1108/13552541211272027

2010, J. Mater. Eng. Perform., 19, 666, 10.1007/s11665-009-9535-2

2009, Rapid Prototyping J., 15, 346, 10.1108/13552540910993879

2011, Laser-Based Micro- and Nanopackaging and Assembly V

2007, J. Nucl. Mater., 362, 189, 10.1016/j.jnucmat.2007.01.078

2012, Conformal Cooling in Moulds With Special Geometry, p. 409

2007, Laser-Based Micro- and Nanopackaging and Assembly, 45911

2007, Rapid Prototyping J., 13, 291, 10.1108/13552540710824797

2007, Proc. Inst. Mech. Eng., Part B, 221, 945, 10.1243/09544054JEM764

2012, Adv. Mater. Res., 502, 67, 10.4028/www.scientific.net/AMR.502.67

2012, Mater. Res. Innovations, 16, 321, 10.1179/1433075X11Y.0000000045

2006, High Performance Structures and Materials III, 481

2011, J. Sandwich Struct. Mater., 13, 479, 10.1177/1099636210388983

2011, J. Sandwich Struct. Mater., 13, 303, 10.1177/1099636210380997

2012, Shock Compression of Condensed Matter—2011

2012, Materials and Manufacturing Technologies XIV, 386

2010, J. Sandwich Struct. Mater., 12, 159, 10.1177/1099636209104536

2013, Int. J. Impact Eng., 60, 120, 10.1016/j.ijimpeng.2013.04.007

2009, J. Laser Micro Nanoeng., 4, 128, 10.2961/jlmn.2009.02.0010

2008, Mater. Sci. Technol., 24, 1501, 10.1179/174328408X287691

2011, Powder Metall., 54, 225, 10.1179/003258909X12450768326947

2009, J. Sci. Ind. Res., 68, 1038

2013, Lasers in Manufacturing, 836

2009, Appl. Surf. Sci., 255, 5523, 10.1016/j.apsusc.2008.07.154

2014, Opt. Laser Technol., 56, 451, 10.1016/j.optlastec.2013.09.017

2006, CIRP Ann., 55, 187, 10.1016/S0007-8506(07)60395-3

2012, Surf. Coat. Technol., 206, 4704, 10.1016/j.surfcoat.2012.05.072

2014, J. Mater. Res., 29, 2036, 10.1557/jmr.2014.131

2009, Mater. Manuf. Process., 24, 837, 10.1080/10426910902841837

2009, Mater. Sci. Eng., A, 513–514, 64, 10.1016/j.msea.2009.01.053

2012, Rapid Prototyping J., 18, 420, 10.1108/13552541211250418

2011, Rapid Prototyping J., 17, 312, 10.1108/13552541111156450

2006, Advanced Materials Forum III, 1, 516

2013, Mater. Charact., 84, 72, 10.1016/j.matchar.2013.07.010

2009, J. Strain Anal. Eng. Des., 44, 93, 10.1243/03093247JSA464

2012, Materialwiss. Werkstofftech., 43, 913, 10.1002/mawe.201200030

2015, Wohlers Report

2013, Mater. Des., 50, 581, 10.1016/j.matdes.2013.03.056

2013, Int. J. Adv. Manuf. Technol., 69, 1299, 10.1007/s00170-013-5106-7

2013, Rapid Prototyping J., 19, 88, 10.1108/13552541311302932

2011, Lasers in Manufacturing 2011: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, 255

2012, Int. J. Adv. Manuf. Technol., 60, 601, 10.1007/s00170-011-3643-5

2013, Int. J. Adv. Manuf. Technol., 69, 1323, 10.1007/s00170-013-5121-8

2013, Mater. Des., 47, 386, 10.1016/j.matdes.2012.11.062

2012, Int. J. Adv. Manuf. Technol., 58, 1189, 10.1007/s00170-011-3443-y

2011

2003, Proc. Inst. Mech. Eng., Part C, 217, 119, 10.1243/095440603762554668

2006, Proc. Inst. Mech. Eng., Part C, 220, 857, 10.1243/09544062JMES133

2009, J. Biomed. Mater. Res., Part B, 89B, 325, 10.1002/jbm.b.31219

2009, J. Mater. Sci. Mater. Med., 20, 1839, 10.1007/s10856-009-3763-8

2007, J. Biomed. Mater. Res., Part A, 83A, 272, 10.1002/jbm.a.31231

2009, J. Mech. Behav. Biomed. Mater., 2, 20, 10.1016/j.jmbbm.2008.05.004

2009, Tissue Eng., Part C, 15, 115, 10.1089/ten.tec.2008.0288

2007, Rapid Prototyping J., 13, 196, 10.1108/13552540710776142

2013, J. Mater. Sci. Mater. Med., 24, 745, 10.1007/s10856-012-4836-7

2014, Virtual Phys. Prototyping, 9, 115, 10.1080/17452759.2014.900857

2011, Mater. Charact., 62, 488, 10.1016/j.matchar.2011.03.006

2012, Powder Metall., 55, 309, 10.1179/1743290112Y.0000000007

2013, Titanium Scaffolds for Custom CMF Restorations, 517

2013, Acta Bioeng. Biomech., 15, 69, 10.5277/abb130109

2012, Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium, 226

2012, Environmental Degradation of Engineering & Materials Engineering and Technologies, 225

2013, First CIRP Conference on Biomanufacturing, 79

2010, Mater. Lett., 64, 674, 10.1016/j.matlet.2009.12.035

2013, Mater. Des., 49, 545, 10.1016/j.matdes.2013.01.038

2011, Mater. Sci. Eng., A, 528, 7962, 10.1016/j.msea.2011.07.026

2013, J. Mater. Process. Technol., 213, 1558, 10.1016/j.jmatprotec.2013.03.013

2013, Biomed. Mater. Eng., 23, 433, 10.3233/BME-130765

2011

1999, Mater. Des., 20, 115, 10.1016/S0261-3069(99)00017-5

2009, Single Part Microwave Filters Made From Selective Laser Melting, 1421

2013

2012, Mater. Des., 41, 226, 10.1016/j.matdes.2012.05.017

2004, Proc. Inst. Mech. Eng., Part C, 218, 711, 10.1243/0954406041319545

2012, Acta Mater., 60, 3849, 10.1016/j.actamat.2012.04.006

2013, Vacuum, 95, 25, 10.1016/j.vacuum.2013.02.003

2011, Scr. Mater., 65, 21, 10.1016/j.scriptamat.2011.03.024

2015, Virtual Phys. Prototyping, 10, 13, 10.1080/17452759.2015.1008643

2012, J. Mech. Behav. Biomed. Mater., 9, 34, 10.1016/j.jmbbm.2012.01.008

2010, Mater. Des., 31, 3982, 10.1016/j.matdes.2010.02.050

2010, Selective Laser Melting of NiTi Shape Memory Components, 233

2012, Structural and Functional Properties of NiTi Shape Memory Alloys Produced by Selective Laser Melting, 291

2008

2012, Acta Mater., 60, 2229, 10.1016/j.actamat.2011.12.032

2012, J. Alloys Compd., 513, 518, 10.1016/j.jallcom.2011.10.107

2013, Virtual Phys. Prototyping, 8, 87, 10.1080/17452759.2013.790600

2011, Mater. Sci. Technol., 27, 344, 10.1179/026708309X12578491814591

2012, Mater. Sci. Eng., A, 534, 446, 10.1016/j.msea.2011.11.092

2013, Rapid Prototyping J., 19, 282, 10.1108/13552541311323281

2006, Int. J. Mach. Tools Manuf., 46, 1188, 10.1016/j.ijmachtools.2006.01.024

2013, Mater. Sci. Eng.,: C, 33, 419, 10.1016/j.msec.2012.09.008

1997

1998, Rapid Prototyping J., 4, 112, 10.1108/13552549810222939

1998, J. Miner. Met. Mater. Soc., 50, 17, 10.1007/s11837-998-0299-1

2013, J. Mater. Process. Technol., 213, 2126, 10.1016/j.jmatprotec.2013.06.013

2011, Int. J. Adv. Manuf. Technol., 58, 545, 10.1007/s00170-011-3423-2

2010, J. Mater. Process. Technol., 210, 1624, 10.1016/j.jmatprotec.2010.05.010

2009, Rapid Prototyping J., 15, 96, 10.1108/13552540910943397

Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, Solid Freeform Fabrication Symposium, 484

2003, The effect of varying laser scanning speed on DMLR processed metal parts, 43

2006, Powder Metall., 49, 258, 10.1179/174329006X95662

2010, Virtual Phys. Prototyping, 5, 13, 10.1080/17452751003718629

2012, Mater. Manuf. Process., 27, 1267, 10.1080/10426914.2012.663119

2014, Int. J. Refract. Met. Hard Mater., 45, 15, 10.1016/j.ijrmhm.2014.02.007

2013, Mater. Today, 16, 37, 10.1016/j.mattod.2013.01.018

S. P. Faure, L. Mercier, P. Didier, R. Roux, J. F. Coulon, and S. Garel, Laser Sintering Process Analysis: Application to Chromium-Cobalt Alloys For Dental Prosthesis Production (ASME, 2012), pp. 9–15.

2011, Virtual Phys. Prototyping, 6, 179, 10.1080/17452759.2011.619083

2012, Odontology, 100, 249, 10.1007/s10266-011-0050-1

2013, Dental Mater., 29, E91, 10.1016/j.dental.2013.04.007

2013, J. Adv. Prosthodontics, 5, 471, 10.4047/jap.2013.5.4.471

2011, Rapid Prototyping J., 17, 479, 10.1108/13552541111184206

2003, Rapid Prototyping J., 9, 334, 10.1108/13552540310502239

2011, SLM components made from copper alloy powder open up new opportunities

2013, Appl. Therm. Eng., 52, 498, 10.1016/j.applthermaleng.2012.12.011

2008

2013, Metall. Italiana, 10, 15

2010, J. Mater. Eng. Perform., 20, 1049, 10.1007/s11665-010-9720-3

2013, Med. Phys., 40, 012501, 10.1118/1.4769122

2012, Rapid Prototyping J., 18, 81, 10.1108/13552541211193520

2011, Gold Bull., 44, 113, 10.1007/s13404-011-0017-6

2010, 487

2011, 271

2007, J. Mater. Process. Technol., 182, 564, 10.1016/j.jmatprotec.2006.09.026

2007, Chin. Opt. Lett., 5, 37

2009, Mater. Des., 30, 2099, 10.1016/j.matdes.2008.08.036

2013, 285

2014, Selective Laser Melting: On The Study of Microstructure of K220, 176

2012, Mater. Des., 34, 753, 10.1016/j.matdes.2011.06.061

2010, Gold Bull., 43, 8, 10.1007/bf03214976

2013, Int. J. Adv. Manuf. Technol., 67, 2743, 10.1007/s00170-012-4688-9

2010, Selective Laser Melting of Magnesium for Future Applications in Medicine

2013, High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October 2013, 261

2013, High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October 2013, 267

2013, Rapid Prototyping J., 19, 51, 10.1108/13552541311292736

2011, in SFF Symposium

2012, J. Sol-Gel Sci. Technol., 64, 704, 10.1007/s10971-012-2905-5

2003, Int. J. Adv. Manuf. Technol., 21, 1015, 10.1007/s00170-002-1424-x

2007, Appl. Surf. Sci., 254, 989, 10.1016/j.apsusc.2007.08.085

2007, Appl. Surf. Sci., 254, 966, 10.1016/j.apsusc.2007.09.001

2007, Interceramics, 56, 420

2003, Mater. Des., 24, 623, 10.1016/S0261-3069(03)00126-2

2007, Rapid manufacturing of ceramic components for medical and technical applications via selective laser melting

2012, Int. J. Adv. Manuf. Technol., 64, 239, 10.1007/s00170-012-3994-6

1998, Mater. Manuf. Process., 13, 241, 10.1080/10426919808935239

2009, Mater. Lett., 63, 1577, 10.1016/j.matlet.2009.04.010

2007, J. Mater. Sci., 42, 7647, 10.1007/s10853-007-1661-3

2009, J. Mater. Process. Technol., 209, 5793, 10.1016/j.jmatprotec.2009.06.012

2011, J. Biomed. Mater. Res., Part A, 97, 466, 10.1002/jbm.a.33058

2011, Surf. Coat. Technol., 205, 3285, 10.1016/j.surfcoat.2010.11.051

2011, Powder Metall. Metal Ceram., 50, 275, 10.1007/s11106-011-9329-6

2012, Virtual Phys. Prototyping, 7, 107, 10.1080/17452759.2012.687911

2000, Mater. Des., 21, 63, 10.1016/S0261-3069(99)00057-6

2012, Powder Technol., 231, 112, 10.1016/j.powtec.2012.07.061

2009, Mater. Lett., 63, 2536, 10.1016/j.matlet.2009.08.043

2010, Acta Metall. Sin., 46, 761, 10.3724/SP.J.1037.2010.00761

2009, Appl. Surf. Sci., 255, 9230, 10.1016/j.apsusc.2009.07.008

2011, Compos. Sci. Technol., 71, 1612, 10.1016/j.compscitech.2011.07.010

2010, Mater. Sci. Eng., A, 527, 7585, 10.1016/j.msea.2010.08.075

2009, Int. J. Adv. Manuf. Technol., 48, 597, 10.1007/s00170-009-2304-4

2006, J. Alloys Compd., 421, 166, 10.1016/j.jallcom.2005.09.084

2011, Adv. Compos. Mater., 20, 277, 10.1163/092430410X547092

2008, Appl. Surf. Sci., 254, 3971, 10.1016/j.apsusc.2007.12.028

2009, J. Mater. Res., 24, 3397, 10.1557/jmr.2009.0419

2012, J. Alloys Compd., 541, 328, 10.1016/j.jallcom.2012.06.097

2012, Scr. Mater., 67, 185, 10.1016/j.scriptamat.2012.04.013

2012, Metall. Mater. Trans. A, 43A, 697, 10.1007/s11661-011-0876-8

2013, J. Alloys Compd., 579, 415, 10.1016/j.jallcom.2013.06.087

2002, Solid Freeform Fabrication Symposium, 224

2003, CIRP Ann., 52, 173, 10.1016/S0007-8506(07)60558-7

2006, Mater. Sci. Eng., A, 435–436, 54, 10.1016/j.msea.2006.07.105

2013, Virtual Phys. Prototyping, 8, 11, 10.1080/17452759.2013.772319

2007, Mater. Sci. Eng., A, 445–446, 316, 10.1016/j.msea.2006.09.057

2010, Rapid Prototyping J., 16, 258, 10.1108/13552541011049270

2011, Mater. Des., 32, 139, 10.1016/j.matdes.2010.06.020

2013, Virtual Phys. Prototyping, 8, 19, 10.1080/17452759.2013.778175

2014, Mater. Charact., 94, 116, 10.1016/j.matchar.2014.05.001

2013, J. Mater. Process. Technol., 213, 1019, 10.1016/j.jmatprotec.2013.01.020

2014, Virtual Phys. Prototyping, 9, 213, 10.1080/17452759.2014.949406

2014

2014, Filtration + Separation, 51, 42, 10.1016/S0015-1882(14)70073-4

L. Nickels, “Meeting the mainstream,” Metal Powder Report, Special Feature (2015).

2014, Virtual Phys. Prototyping, 10, 9, 10.1080/17452759.2014.972661