Review of nature-inspired methods for wake-up scheduling in wireless sensor networks
Tài liệu tham khảo
Mitchell, 1996
A. Engelbrecht, Computational Intelligence: An Introduction, second ed., Wiley, New York, NY, USA, 2007.
M. Affenzeller, S. Winkler, S. Wagner, A. Beham, Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications, Chapman & Hall/CRC, Boca Raton, FL, 2009.
Bonabeau, 1999
C. Blum, D. Merkle, Swarm Intelligence: Introduction and Applications, Springer Publishing Company, Incorporated, Barcelona, 2008.
D. Floreano, C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies, Intelligent Robotics and Autonomous Agents, MIT Press, Cambridge, MT, 2008.
E. Sanchez, G. Squillero, A. Tonda, Industrial Applications of Evolutionary Algorithms, Intelligent Systems Reference Library, Springer, Berlin, 2012.
Das, 2011, Real-parameter evolutionary multimodal optimization – a survey of the state-of-the-art, Swarm Evol. Comput., 1, 71, 10.1016/j.swevo.2011.05.005
S. Olariu, A. Zomaya, Handbook of bioinspired algorithms and applications, In: Chapman & Hall/CRC Computer and Information Science Series, Taylor & Francis, Boca Raton, FL, 2005.
P. Krömer, J. Platoš, V. Snášel, Implementing artificial immune systems for the linear ordering problem, In: V. Snášel, A. Abraham, E.S. Corchado (Eds.), Soft Computing Models in Industrial and Environmental Applications, in: Advances in Intelligent Systems and Computing, vol. 188, Springer, Berlin, Heidelberg, 2013, pp. 53–62, http://dx.doi.org/10.1007/978-3-642-32922-7_6.
P. Krömer, J. Platos, V. Snásel, Independent task scheduling by artificial immune systems, differential evolution, and genetic algorithms, In: INCoS, 2012, pp. 28–32.
Krishnamachari, 2005
Mills, 2007, A brief survey of self-organization in wireless sensor networks, Wirel. Commun. Mob. Comput., 7, 823, 10.1002/wcm.499
Chiang, 2007, Self-configuration of network services with biologically inspired learning and adaptation, J. Netw. Syst. Manag., 15, 87, 10.1007/s10922-006-9056-3
P. Boonma, P. Champrasert, J. Suzuki, A biologically inspired architecture for self-managing sensor networks, In: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, SECON06, vol. 3, IEEE, Reston, VA, 2006, pp. 734–739.
Charalambous, 2010, A biologically inspired networking model for wireless sensor networks, IEEE Network, 24, 6, 10.1109/MNET.2010.5464221
J. Hong, S. Lu, D. Chen, J. Cao, Towards bio-inspired self-organization in sensor networks: applying the ant colony algorithm, In: 2008 22nd International Conference on Advanced Information Networking and Applications, AINA 2008, IEEE, Okinawa, 2008, pp. 1054–1061.
M. Britton, V. Shum, L. Sacks, H. Haddadi, A biologically inspired approach to designing wireless sensor networks, In: 2005 Proceedings of the Second European Workshop on Wireless Sensor Networks, 2005, pp. 256–266, http://dx.doi.org/10.1109/EWSN.2005.1462018.
Mutazono, 2012, Energy efficient self-organizing control for wireless sensor networks inspired by calling behaviour of frogs, Comput. Commun., 35, 661, 10.1016/j.comcom.2011.09.013
F. Ge, Y. Wang, Q. Wang, J. Kang, Energy efficient broadcasting based on ant colony system optimization algorithm in wireless sensor networks, In: 2007 Third International Conference on Natural Computation, ICNC 2007, vol. 4, IEEE, Haikou, 2007, pp. 129–133.
Kuila, 2013, A novel evolutionary approach for load balanced clustering problem for wireless sensor networks, Swarm Evol. Comput., 12, 48, 10.1016/j.swevo.2013.04.002
J. Freeman, M.V. Ramesh, A. Mohan, Biologically inspired data propagation and aggregation method for wireless sensor networks, In: ICWN, 2008, pp. 673–678.
F. Nunez, Y. Wang, S. Desai, G. Cakiades, F. Doyle, Bio-inspired synchronization of wireless sensor networks for acoustic event detection systems, In: 2012 International IEEE Symposium on Precision Clock Synchronization for Measurement Control and Communication (ISPCS), IEEE, San Francisco, CA, 2012, pp. 1–6.
Saleem, 2011, Swarm intelligence based routing protocol for wireless sensor networks, Inf. Sci., 181, 4597, 10.1016/j.ins.2010.07.005
P. Krömer, P. Musilek, Bio-inspired routing strategies for wireless sensor networks, In: D. Krol, D. Fay, B. Gabrys (Eds.), Propagation Phenomena in Real World Networks, Springer, Switzerland, 2014, In press.
Khalil, 2011, Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks, Swarm Evol. Comput., 1, 195, 10.1016/j.swevo.2011.06.004
Arivudainambi, 2013, Memetic algorithm for minimum energy broadcast problem in wireless ad hoc networks, Swarm Evol. Comput., 12, 57, 10.1016/j.swevo.2013.04.001
Buratti, 2009, An overview on wireless sensor networks technology and evolution, Sensors, 9, 6869, 10.3390/s90906869
R. Muraleedharan, I. Demirkol, O. Yang, H. Ba, S. Ray, W. Heinzelman, Sleeping techniques for reducing energy dissipation, In: The Art of Wireless Sensor Networks, Springer, Berlin, 2014, pp. 163–197.
A. Kansal, J. Hsu, S. Zahedi, M.B. M.B. Srivastava, Power management in energy harvesting sensor networks, ACM Trans. Embed. Comput. Syst., 6(4), Artcile 32, pp. 1-38, http://dx.doi.org/10.1145/1274858.1274870.
Valera, 2014, Survey on wakeup scheduling for environmentally powered wireless sensor networks, Comput. Commun., 52, 21, 10.1016/j.comcom.2014.05.004
Anastasi, 2009, Energy conservation in wireless sensor networks, Ad Hoc Netw., 7, 537, 10.1016/j.adhoc.2008.06.003
S. Jabbar, R. Iram, A.A. Minhas, I. Shafi, S. Khalid, M. Ahmad, Intelligent optimization of wireless sensor networks through bio-inspired computing: survey and future directions, Int. J. Distrib. Sens. Netw., http://dx.doi.org/10.1155/2013/421084.
Karl, 2005
Corke, 2010, Environmental wireless sensor networks, Proc. IEEE, 98, 1903, 10.1109/JPROC.2010.2068530
Oliveira, 2011, Wireless sensor networks, JCM, 6, 143, 10.4304/jcm.6.2.143-151
Prauzek, 2014, Powering environmental monitoring systems in Arctic regions, Elektron. Elektrotech., 20, 34, 10.5755/j01.eee.20.7.8020
C. Domínguez-Medina, N. Cruz-Cortés, Routing algorithms for wireless sensor networks using ant colony optimization, In: G. Sidorov, A. Hernández Aguirre, C. Reyes García (Eds.), Advances in Soft Computing, in: Lecture Notes in Computer Science, vol. 6438, Springer, Berlin, Heidelberg, 2010, pp. 337–348, http://dx.doi.org/10.1007/978-3-642-16773-7_29.
Lloyd, 2007, Relay node placement in wireless sensor networks, IEEE Trans. Comp., 56, 134, 10.1109/TC.2007.250629
Matsumoto, 2010, Bio-inspired data transmission scheme to multiple sinks for the long-term operation of wireless sensor networks, Artif. Life Robot., 15, 189, 10.1007/s10015-010-0792-9
Bitam, 2013, HyBR, J. Syst. Archit., 59, 953, 10.1016/j.sysarc.2013.04.004
A. Sanchez-Azofeifa, J. Calvo, M.M. do Espirito Santo, G.W. Fernandes, J. Powers, M. Quesada, Tropical dry forests in the americas: the tropi-dry endeavour, In: A. Sanchez-Azofeifa, J.S. Powers, G.W. Fernandes, M. Quesada (Eds.), Tropical Dry Forests in the Americas: Ecology, Conservation, and Management, CRC Press, Boca Raton, FL, 2013, pp. 1–16.
L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang, J. Stankovic, D. Young, J. Porter, LUSTER: wireless sensor network for environmental research, In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, SenSys ׳07, ACM, New York, NY, USA, 2007, pp. 103-116 http://dx.doi.org/10.1145/1322263.1322274.
W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor networks, In: Proceedings of INFOCOM 2002 Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, New York, vol. 3, 2002, pp. 1567–1576, http://dx.doi.org/10.1109/INFCOM.2002.1019408.
J. Polastre, J. Hill, D. Culler, Versatile low power media access for wireless sensor networks, In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, SenSys ׳04, ACM, New York, NY, USA, 2004, pp. 95–107, http://dx.doi.org/10.1145/1031495.1031508.
A. Bogliolo, E. Lattanzi, V. Freschi, Idleness as a resource in energy-neutral WSNs, In: Proceedings of the 1st International Workshop on Energy Neutral Sensing Systems, ENSSys ׳13, ACM, New York, NY, USA, 2013, pp. 12:1–12:6, http://dx.doi.org/10.1145/2534208.2534214.
Freescale Semiconductor, K20 Sub-Family Datasheet, rev. fifth ed., October 2013.
Digi International Inc, XBee/XBee-PRO RF Modules Product Manual, v1.xex ed., September 2009.
L. Dai, P. Basu, Energy and delivery capacity of wireless sensor networks with random duty-cycles, In: 2006 IEEE International Conference on Communications, ICC ׳06, vol. 8, 2006, pp. 3503–3510, http://dx.doi.org/10.1109/ICC.2006.255615.
Y. Sun, O. Gurewitz, D. B. Johnson, Ri-mac: a receiver-initiated asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor networks, In: Proceedings of ACM SenSys, 2008, pp. 1–14.
Demirkol, 2009, Wake-up receivers for wireless sensor networks, IEEE Wirel. Commun., 16, 88, 10.1109/MWC.2009.5281260
H. Ba, J. Parvin, L. Soto, I. Demirkol, W. Heinzelman, Passive rfid-based wake-up radios for wireless sensor networks, In: J. R. Smith (Ed.), Wirelessly Powered Sensor Networks and Computational RFID, Springer, New York, 2013, pp. 113–129, http://dx.doi.org/10.1007/978-1-4419-6166-2_6.
Gao, 2005, Analysis of energy conservation in sensor networks, Wirel. Netw., 11, 787, 10.1007/s11276-005-3531-8
M. Enzinger, Energy-efficient communication in wireless sensor networks, Sens. Nodes–Oper. Netw. Appl. (SN) 25.
Niyato, 2007, Sleep and wakeup strategies in solar-powered wireless sensor/mesh networks, IEEE Trans. Mob. Comput., 6, 221, 10.1109/TMC.2007.30
N. Israr, Energy efficient communication in wireless sensor networks, In: N. Zaman, K. Ragab, A.B. Abdullah (Eds.), Wireless Sensor Networks and Energy Efficiency: Protocols, Routing and Management, IGI Global, Hershey, PA, 2012, pp. 274–290, http://dx.doi.org/10.4018/978-1-4666-0101-7.ch012.
Liang, 2013, The distributed infectious disease model and its application to collaborative sensor wakeup of wireless sensor networks, Inf. Sci., 223, 192, 10.1016/j.ins.2012.08.025
C. Yu, W. Guo, G. Chen, Energy-balanced sleep scheduling based on particle swarm optimization in wireless sensor network, In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), IEEE, Shanghai, 2012, pp. 1249–1255.
S. Wieser, P.L. Montessoro, M. Loghi, Firefly-inspired synchronization of sensor networks with variable period lengths, In: Adaptive and Natural Computing Algorithms, Springer, Berlin, 2013, pp. 376–385.
A. Giusti, A.L. Murphy, G.P. Picco, Decentralized scattering of wake-up times in wireless sensor networks, In: Wireless Sensor Networks, Springer, Berlin, 2007, pp. 245–260.
Y. Gu, M. Pan, W. Li, Maximizing the lifetime of delay-sensitive sensor networks via joint routing and sleep scheduling, In: 2014 International Conference on Computing, Networking and Communications (ICNC), IEEE, Honolulu, HI, 2014, pp. 540–544.
Liang, 2010, A biologically inspired sensor wakeup control method for wireless sensor networks, IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev., 40, 525, 10.1109/TSMCC.2010.2046411
Guo, 2012, Sleep scheduling for critical event monitoring in wireless sensor networks, IEEE Trans. Parallel Distrib. Syst., 23, 345, 10.1109/TPDS.2011.165
Y. Dongmei, W. Jinkuan, Sensor scheduling target tracking-oriented with wireless sensor network, In: 2013 25th Chinese Control and Decision Conference (CCDC), IEEE, Guiyang, 2013, pp. 4025–4028.
Hsu, 2014, Joint design of asynchronous sleep-wake scheduling and opportunistic routing in wireless sensor networks, IEEE Trans. Comput., 63, 1840, 10.1109/TC.2012.282
A. Kanzaki, N. Wakamiya, T. Hara, Energy-efficient task scheduling and data aggregation techniques in wireless sensor networks for information explosion era, In: Wireless Sensor Network Technologies for the Information Explosion Era, Springer, Berlin, 2010, pp. 47–75.
Zimmermann, 1980, OSI reference model – the ISO model of architecture for open systems interconnection, IEEE Trans. Commun. Syst. COM, 28, 425, 10.1109/TCOM.1980.1094702
M. Mihaylov, Y.-A. Le Borgne, K. Tuyls, A. Nowé, Reinforcement learning for self-organizing wake-up scheduling in wireless sensor networks, In: Agents and Artificial Intelligence, Springer, Berlin, 2013, pp. 382–396.
P. Yadav, J.A. McCann, EBS: decentralised slot synchronisation for broadcast messaging for low-power wireless embedded systems, In: Proceedings of the 5th International Conference on Communication System Software and Middleware, ACM, 2011, p. 9.
J. Gobel, A. Krzesinski, A model of self deployment to maximise area coverage in sensor networks, In: 2013 Australasian Telecommunication Networks and Applications Conference (ATNAC), IEEE, Christchurch, 2013, pp. 7–12.
Park, 2009, Design and analysis of asynchronous wakeup for wireless sensor networks, IEEE Trans. Wirel. Commun., 8, 5530, 10.1109/TWC.2009.080814
Harris, 2009, Idle-time energy savings through wake-up modes in underwater acoustic networks, Ad Hoc Netw., 7, 770, 10.1016/j.adhoc.2008.07.014
Y. Chen, Z. Qian, Low power scheduling based on statistics, In: 2012 International Conference on Systems and Informatics (ICSAI), 2012, pp. 603–608, http://dx.doi.org/10.1109/ICSAI.2012.6223070.
Mohamadi, 2013, Learning automata-based algorithms for solving the target coverage problem in directional sensor networks, Wirel. Personal Commun., 73, 1309, 10.1007/s11277-013-1279-5
Mohamadi, 2014, Solving target coverage problem using cover sets in wireless sensor networks based on learning automata, Wirel. Personal Commun., 75, 447, 10.1007/s11277-013-1371-x
M. Esnaashari, M. Meybodi, Dynamic point coverage in wireless sensor networks: a learning automata approach, In: H. Sarbazi-Azad, B. Parhami, S.-G. Miremadi, S. Hessabi (Eds.), Advances in Computer Science and Engineering, Communications in Computer and Information Science, vol. 6, Springer, Berlin, Heidelberg, 2009, pp. 758–762, http://dx.doi.org/10.1007/978-3-540-89985-3_97.
Esnaashari, 2010, A learning automata based scheduling solution to the dynamic point coverage problem in wireless sensor networks, Comput. Netw., 54, 2410, 10.1016/j.comnet.2010.03.014
Mostafaei, 2013, Maximizing lifetime of target coverage in wireless sensor networks using learning automata, Wirel. Personal Commun., 71, 1461, 10.1007/s11277-012-0885-y
Lin, 2012, An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks, IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev., 42, 408, 10.1109/TSMCC.2011.2129570
W. Rui, L. Yan, Y. Gangqiang, L. Chaoxia, P. Quan, Swarm intelligence for the self-organization of wireless sensor network, In: 2006 IEEE Congress on Evolutionary Computation, CEC 2006, 2006, pp. 838–842, http://dx.doi.org/10.1109/CEC.2006.1688398.
M. Zou, Z. Ping, S. Zheng, X. Qin, H. Tongzhi, A novel energy efficient converage control in wsns based on ant colony optimization, In: 2010 International Symposium on Computer Communication Control and Automation (3CA), vol. 1, 2010, pp. 523–527, http://dx.doi.org/10.1109/3CA.2010.5533741.
Y. Lin, X.-M. Hu, J. Zhang, An ant-colony-system-based activity scheduling method for the lifetime maximization of heterogeneous wireless sensor networks, In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ׳10, ACM, New York, NY, USA, 2010, pp. 23–30, http://dx.doi.org/10.1145/1830483.1830488.
Chen, 2010, Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks, IEEE Commun. Lett., 14, 833, 10.1109/LCOMM.2010.080210.100770
J. Hui Zhong, J. Zhang, Energy-efficient local wake-up scheduling in wireless sensor networks, In: 2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp. 2280–2284, http://dx.doi.org/10.1109/CEC.2011.5949898.
Lee, 2011, Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones, IEEE Trans. Ind. Inform., 7, 419, 10.1109/TII.2011.2158836
X.-M. Hu, J. Zhang, Ant colony optimization for enhancing scheduling reliability in wireless sensor networks, In: 2012 IEEE Int. Conf. Syst. Man Cybern. (SMC), 2012, pp. 785–790, http://dx.doi.org/10.1109/ICSMC.2012.6377823.
T. Wang, Z. Wu, J. Mao, PSO-based hybrid algorithm for multi-objective TDMA scheduling in wireless sensor networks, In: 2007 Second International Conference on Communications and Networking in China, CHINACOM׳07, IEEE, Shanghai, 2007, pp. 850–854.
Wang, 2007, A new method for multi-objective TDMA scheduling in wireless sensor networks using pareto-based PSO and fuzzy comprehensive judgement, vol. 4782, 144
J. Mao, X. Wu, Z. Wu, S. Wang, A novel energy-aware TDMA scheduling algorithm for wireless sensor networks, In: X. Cheng, W. Li, T. Znati (Eds.), Wireless Algorithms, Systems, and Applications, in: Lecture Notes in Computer Science, vol. 4138, Springer, Berlin, Heidelberg, 2006, pp. 319–328, http://dx.doi.org/10.1007/11814856_31.
Wimalajeewa, 2008, Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO, IEEE Trans. Wirel. Commun., 7, 3608, 10.1109/TWC.2008.070386
J. Niu, Evolutionary self-learning scheduling approach for wireless sensor network, In: 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 2, IEEE, Changsha, 2010, pp. 245–249.
G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-inspired sensor network synchronicity with realistic radio effects, In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, SenSys ׳05, ACM, New York, NY, USA, 2005, pp. 142–153, http://dx.doi.org/10.1145/1098918.1098934.
C. Guo, Y. Jin, Network topology effects on reachback firefly algorithm in slot synchronization, In: R. Wang, F. Xiao (Eds.), Advances in Wireless Sensor Networks, Communications in Computer and Information Science, vol. 334, Springer, Berlin, Heidelberg, 2013, pp. 75–82, http://dx.doi.org/10.1007/978-3-642-36252-1_8.
C.-C. Lai, C.-K. Ting, R.-S. Ko, An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications, In: 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 2007, pp. 3531–3538, http://dx.doi.org/10.1109/CEC.2007.4424930.
J. Jia, J. Chen, G. Chang, Z. Tan, Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm, Comput. Math. Appl. 57 (11–12) (2009) 1756–1766, In: Proceedings of the International Conference Bio-Inspired Computing-Theories and Applications BIC-TA 2007 Zhengzhou, China, http://dx.doi.org/10.1016/j.camwa.2008.10.036.
X. Fei, S. Samarah, A. Boukerche, A bio-inspired coverage-aware scheduling scheme for wireless sensor networks, In: 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and PhD Forum (IPDPSW), 2010, pp. 1–8, http://dx.doi.org/10.1109/IPDPSW.2010.5470705.
Y. Lin, X.-M. Hu, J. Zhang, O. Liu, H. lin Liu, Optimal node scheduling for the lifetime maximization of two-tier wireless sensor networks, In: 2010 IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8, http://dx.doi.org/10.1109/CEC.2010.5586264.
Hu, 2010, Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks, IEEE Trans. Evol. Comput., 14, 766, 10.1109/TEVC.2010.2040182
C.-P. Chen, C.-L. Chuang, T.-S. Lin, C.-Y. Lee, J.-A. Jiang, A coverage-guaranteed algorithm to improve network lifetime of wireless sensor networks, Proced. Eng. 5 (2010) 192–195, Eurosensor XXIV Conference Eurosensor XXIV Conference, http://dx.doi.org/10.1016/j.proeng.2010.09.080.
Gil, 2011, A target coverage scheduling scheme based on genetic algorithms in directional sensor networks, Sensors, 11, 1888, 10.3390/s110201888
E.A. Khalil, S. Ozdemir, Energy aware evolutionary routing protocol with probabilistic sensing model and wake-up scheduling, In: 2013 IEEE Globecom Workshops (GC Wkshps), IEEE, Atlanta, GA , 2013, pp. 873–878.
S.M. Islam, S. Ghosh, S. Das, A. Abraham, S. Roy, A modified discrete differential evolution based TDMA scheduling scheme for many to one communications in wireless sensor networks, In: 2011 IEEE Congress on Evolutionary Computation (CEC), IEEE, New Orleans, LA, 2011, pp. 1950–1957.
Shi, 2007, Stochastic sleeping with sink-oriented connectivity and coverage in large-scale sensor networks, Int. J. Commun. Syst., 20, 809, 10.1002/dac.846
S. Wang, H. Wu, An improved coverage scheme based on cellular automata in WSN, In: 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC), vol. 1, 2010, pp. 458–461, http://dx.doi.org/10.1109/NSWCTC.2010.114.
M. Jahanshahi, M. Meybodi, M. Dehghan, Cellular learning automata based scheduling method for wireless sensor networks, In: 2009 14th International CSI Computer Conference, CSICC 2009, IEEE, Tehran, 2009, pp. 646–651.
S. Suthaharan, A. Chawade, R. Jana, J. Deng, Energy efficient DNA-based scheduling scheme for wireless sensor networks, In: Wireless Algorithms, Systems, and Applications, Springer, Berlin, 2009, pp. 459–468.
Iwai, 2006, Bio-inspired autonomous and adaptive coverage control for wireless sensor networks, Front. Neuroinform., 12
T. Iwai, N. Wakamiya, M. Murata, Error-tolerant coverage control based on bio-inspired attractor selection model for wireless sensor networks, In: 2010 IEEE 10th International Conference on Computer and Information Technology (CIT), IEEE, Bradford, 2010, pp. 723–729.
M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, Cambridge, MA, 2004.
Clerc, 2010
J. Kennedy, R. Eberhart, Particle swarm optimization, In: 1995 Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948, http://dx.doi.org/10.1109/ICNN.1995.488968.
Mirollo, 1990, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50, 1645, 10.1137/0150098
D. Lucarelli, I.-J. Wang, Decentralized synchronization protocols with nearest neighbor communication, In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, SenSys׳04, ACM, New York, NY, USA, 2004, pp. 62–68, doi:10.1145/1031495.1031503.
T. Baeck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, IOP Publishing, Bristol, 1997, 〈https://books.google.ca/books?id=n5nuiIZvmpAC〉.
Engelbrecht, 2005
N. Zhu, Simulation and optimization of energy consumption in wireless sensor networks (Ph.D. thesis), Ecole Centrale de Lyon, 2013.
S. Sivanandam, S. Deepa, Introduction to Genetic Algorithms, Springer, Berlin, Heidelberg, 2007, 〈https://books.google.ca/books?id=wonrLjj2GagC〉.
Holland, 1975
A. Czarn, C. MacNish, K. Vijayan, B.A. Turlach, Statistical exploratory analysis of genetic algorithms: the influence of gray codes upon the difficulty of a problem, In: G.I. Webb, X. Yu (Eds.), Australian Conference on Artificial Intelligence, in: Lecture Notes in Computer Science, vol. 3339, Springer, Heidelberg, 2004, pp. 1246–1252.
A.S. Wu, R.K. Lindsay, R. Riolo, Empirical observations on the roles of crossover and mutation, In: T. Bäck (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, 1997, pp. 362–369.
Price, 2005
K.J. Kwak, Y.M. Baryshnikov, E.G. Coffman, Cyclic cellular automata: a tool for self-organizing sleep scheduling in sensor networks, In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN׳08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 535–536, doi:10.1109/IPSN.2008.69.
R. Fisch, Cyclic cellular automata and related processes, Phys. D: Nonlinear Phenom. 45 (1–3) (1990) 19–25, http://dx.doi.org/10.1016/0167-2789(90)90170-T.
Fisch, 1991, Threshold-range scaling of excitable cellular automata, Stat. Comput., 1, 23, 10.1007/BF01890834
Beigy, 2004, A mathematical framework for cellular learning automata, Adv. Complex Syst., 07, 295, 10.1142/S0219525904000202
Beigy, 2007, Open synchronous cellular learning automata, Adv. Complex Syst., 10, 527, 10.1142/S0219525907001264
Kashiwagi, 2006, Adaptive response of a gene network to environmental changes by fitness-induced attractor selection, PLoS ONE, 1, e49, 10.1371/journal.pone.0000049
Allman, 2004
S. Karunasekera, C. Mendis, A. Skvortsov, A. Gunatilaka, A decentralized dynamic sensor activation protocol for chemical sensor networks, In: 2010 9th IEEE International Symposium on Network Computing and Applications (NCA), 2010, pp. 218–223, http://dx.doi.org/10.1109/NCA.2010.39.
Collier, 1996, Pattern formation by lateral inhibition with feedback, J. Theor. Biol., 183, 429, 10.1006/jtbi.1996.0233
Nakagaki, 2000, Maze-solving by an amoeboid organism, Nature, 407, 470, 10.1038/35035159
Li, 2011, Slime mold inspired routing protocols for wireless sensor networks, Swarm Intell., 5, 183, 10.1007/s11721-011-0063-y
Tero, 2010, Rules for biologically inspired adaptive network design, Science, 327, 439, 10.1126/science.1177894
M. Zhang, C. Xu, J. Guan, R. Zheng, Q. Wu, H. Zhang, A novel physarum – inspired routing protocol for wireless sensor networks, Int. J. Distrib. Sens. Netw. (2013).
Y. Wang, W. Fu, D. Agrawal, Intrusion detection in Gaussian distributed wireless sensor networks, In: 2009 IEEE 6th International Conference on Mobile Ad hoc and Sensor Systems, MASS׳09, 2009, pp. 313–321, http://dx.doi.org/10.1109/MOBHOC.2009.5336982.
Y. Taniguchi, N. Wakamiya, M. Murata, T. Fukushima, An autonomous data gathering scheme adaptive to sensing requirements for industrial environment monitoring, In: 2008 New Technologies, Mobility and Security, NTMS׳08, IEEE, Tangier, 2008, pp. 1–5.
J. Chen, J. Jia, Y. Wen, D. Zhao, J. Liu, Modeling and extending lifetime of wireless sensor networks using genetic algorithm, In: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC׳09, ACM, New York, NY, USA, 2009, pp. 47–54, http://dx.doi.org/10.1145/1543834.1543842.
Y.M. Baryshnikov, E.G. Coffman, K.J. Kwak, High performance sleep-wake sensor systems based on cyclic cellular automata, In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN׳08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 517–526, http://dx.doi.org/10.1109/IPSN.2008.14.
L. Prashanth, A. Chatterjee, S. Bhatnagar, Adaptive sleep-wake control using reinforcement learning in sensor networks, In: COMSNETS, 2014, pp. 1–8.
Lanzi, 2002, Learning classifier systems from a reinforcement learning perspective, Soft Comput., 6, 162, 10.1007/s005000100113
Kutsenok, 2011, Swarm ai, Des. Princ. Pract., 5, 7, 10.18848/1833-1874/CGP/v05i01/37798
H. Ahmed, J. Glasgow, Swarm intelligence: concepts, models and applications, Technical Report 585, Queen׳s University, Kingston, Ontario, Canada, 2012.
G. Lu, N. Sadagopan, B. Krishnamachari, A. Goel, Delay efficient sleep scheduling in wireless sensor networks, In: Proceedings of IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2005, vol. 4, 2005, pp. 2470–2481, http://dx.doi.org/10.1109/INFCOM.2005.1498532.
M.-H. Zayani, V. Gauthier, D. Zeghlache, Quantifying spatiotemporal stability by means to entropy: approach and motivations, Technical Report UMR 5157, Institut Mines-Télécom, Télécom SudParis, 2010.
A. G. Watts, M. Prauzek, P. Musilek, E. Pelikan, A. Sanchez-Azofeifa, Fuzzy power management for environmental monitoring systems in tropical regions, In: Proceedings of the International Joint Conference on Neural Networks, 2014, pp. 1719–1726.
Al-Karaki, 2004, Routing techniques in wireless sensor networks, IEEE Wirel. Commun., 11, 6, 10.1109/MWC.2004.1368893
H. Rathore, V. Badarla, S. Jha, A. Gupta, Novel approach for security in wireless sensor network using bio-inspirations, In: 2014 6th International Conference on Communication Systems and Networks, COMSNETS 2014, 2014, pp. 1–8.
M.V. Espina, R. Grech, D. de Jager, P. Remagnino, L. Iocchi, L. Marchetti, D. Nardi, D. Monekosso, M. Nicolescu, C. King, Multi-robot teams for environmental monitoring, In: Innovations in Defence Support Systems-3, Springer, 2011, pp. 183–209.