Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction
Tóm tắt
Từ khóa
Tài liệu tham khảo
IPCC. Special Report on Renewable Energy Sources and Climate Change Mitigation. [cited 2014 November 19]. http://www.ipcc.ch/report/srren/ (2011).
Global, 2012
Moriarty, 2008, Mitigating greenhouse: limited time, limited options, Energy Policy, 364, 1251, 10.1016/j.enpol.2008.01.021
Bockris, 2010, Would methanol formed from CO2 from the atmosphere give the advantage of hydrogen at lesser cost?, Int. J. Hydrogen Energy, 35, 5165, 10.1016/j.ijhydene.2010.03.060
Song, 2006, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today, 115, 2, 10.1016/j.cattod.2006.02.029
Grimston, 2001, The European and global potential of carbon dioxide sequestration in tackling climate change, Clim. Policy, 1, 155, 10.3763/cpol.2001.0120
Olivares-Marín, 2012, Development of adsorbents for CO2 capture from waste materials: a review, Greenhouse Gases Sci. Technol., 2, 20, 10.1002/ghg.45
Bachu, 2007, CO2 storage capacity estimation: methodology and gaps, Int. J. Greenhouse Gas Control, 1, 430, 10.1016/S1750-5836(07)00086-2
Bachu, 2008, CO2 storage in geological media: role, means, status and barriers to deployment, Prog. Energy Combust. Sci., 34, 254, 10.1016/j.pecs.2007.10.001
Aresta, 2007, Utilisation of CO2 as a chemical feedstock: opportunities and challenges, Dalton Trans., 28, 2975, 10.1039/b700658f
Koci, 2008, Photocatalytic reduction of CO2 over TiO2 based catalysts, Chem. Papers, 62, 1, 10.2478/s11696-007-0072-x
Usubharatana, 2006, Photocatalytic process for CO2 emission reduction from industrial flue gas streams, Ind. Eng. Chem. Res., 45, 2558, 10.1021/ie0505763
Mikkelsen, 2010, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43, 10.1039/B912904A
Yano, 2002, Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution, J. Electroanal. Chem., 519, 93, 10.1016/S0022-0728(01)00729-X
Yano, 2007, Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes, J. Solid State Electrochem., 11, 554, 10.1007/s10008-006-0181-4
Creutz, 2001, Carbon dioxide as a feedstock
Maroto-Valer, 2015
Carp, 2004, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32, 33, 10.1016/j.progsolidstchem.2004.08.001
Slamet, 2005, Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method, Catal. Commun., 6, 313, 10.1016/j.catcom.2005.01.011
Murakami, 2013, Photocatalytic reduction of carbon dioxide over shape-controlled titanium(IV) oxide nanoparticles with co-catalyst loading, Curr. Org. Chem., 17, 2449, 10.2174/13852728113179990058
Ishitani, 1993, Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2, J. Photochem. Photobiol. A, 72, 269, 10.1016/1010-6030(93)80023-3
Solymosi, 1994, Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2, Catal. Lett., 27, 61, 10.1007/BF00806978
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Zhang, 2011, Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels, Appl. Catal. A, 400, 195, 10.1016/j.apcata.2011.04.032
Sahu, 2011, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-441
Bideau, 1995, On the immobilization of titanium dioxide in the photocatalytic oxidation of spent waters, J. Photochem. Photobiol. A, 91, 137, 10.1016/1010-6030(95)04098-Z
Ray, 1998, Development of a new photocatalytic reactor for water purification, Catal. Today, 40, 73, 10.1016/S0920-5861(97)00123-5
Jiang, 2010, Turning carbon dioxide into fuel, Philos. Trans. R. Soc. A, 368, 3343, 10.1098/rsta.2010.0119
Akpan, 2009, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170, 520, 10.1016/j.jhazmat.2009.05.039
Kočí, 2008, Photocatalytic reduction of CO2 over TiO2 based catalysts, Chem. Papers, 62, 1, 10.2478/s11696-007-0072-x
Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 10.1021/cr00035a013
Indrakanti, 2009, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2, 745, 10.1039/b822176f
Marinkovic, 2008, vol. 42
Habisreutinger, 2013, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52, 7372, 10.1002/anie.201207199
Tran, 2012, Recent advances in hybrid photocatalysts for solar fuel production, Energy Environ. Sci., 5, 5902, 10.1039/c2ee02849b
Wang, 2015, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Appl. Catal. B, 176–177, 44, 10.1016/j.apcatb.2015.03.045
Wang, 2015, Synthesis of spherical Bi2WO6 nanoparticles by a hydrothermal route and their photocatalytic properties, J. Nanomater., 1
Mills, 1997, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A, 108, 1, 10.1016/S1010-6030(97)00118-4
Beydoun, 1999, Role of nanoparticles in photocatalysis, J. Nanoparticle Res., 1, 439, 10.1023/A:1010044830871
Bahnemann, 1987, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study, J. Phys. Chem., 91, 3789, 10.1021/j100298a015
Jeyalakshmi, 2013, Photocatalytic reduction of carbon dioxide by water: a step towards sustainable fuels and chemicals
Diebold, 2003, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0
Chen, 2009, Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition, Thin Solid Films, 517, 5641, 10.1016/j.tsf.2009.02.075
Kohno, 2000, Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2, Phys. Chem. Chem. Phys., 2, 2635, 10.1039/b001642j
Nguyen, 2008, Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor, Sol. Energy Mater. Sol. Cells, 92, 864, 10.1016/j.solmat.2008.02.010
Guan, 2003, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Appl. Catal. B, 41, 387, 10.1016/S0926-3373(02)00174-1
Qin, 2011, Photocatalytic reduction of CO2 in methanol to methyl formate over CuO–TiO2 composite catalysts, J. Colloid Interface Sci., 356, 257, 10.1016/j.jcis.2010.12.034
Jia, 2009, Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide, Catal. Commun., 11, 87, 10.1016/j.catcom.2009.08.016
Teramura, 2008, Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst, Chem. Phys. Lett., 467, 191, 10.1016/j.cplett.2008.10.079
Teramura, 2010, Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A=Li, Na, K), App. Catal. B, 96, 565, 10.1016/j.apcatb.2010.03.021
Colmenares, 2009, Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview, Materials, 2, 2228, 10.3390/ma2042228
Bellardita, 2007, Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films, Chem. Phys., 339, 94, 10.1016/j.chemphys.2007.06.003
Malato, 2009, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147, 1, 10.1016/j.cattod.2009.06.018
Yuan, 2015, Photocatalytic conversion of CO2 into value-added and renewable fuels, Appl. Surf. Sci., 342, 154, 10.1016/j.apsusc.2015.03.050
Marszewski, 2015, Semiconductor-based photocatalytic CO2 conversion, Mater. Horizons, 2, 261, 10.1039/C4MH00176A
Li, 2014, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Sci. China Mater., 57, 70, 10.1007/s40843-014-0003-1
Indrakanti, 2009, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2, 745, 10.1039/b822176f
Li Puma, 2008, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper, J. Hazard. Mater., 157, 209, 10.1016/j.jhazmat.2008.01.040
Bouras, 2007, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal. B, 73, 51, 10.1016/j.apcatb.2006.06.007
Zeltner, 2005, Shedding light on photocatalysis. Discussion, ASHRAE Trans., 523
Watson, 2004, Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis, J. Nanoparticle Res., 6, 193, 10.1023/B:NANO.0000034623.33083.71
Fujishima, 2008, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001
Kitano, 2007, Recent developments in titanium oxide-based photocatalysts, Appl. Catal. A, 325, 1, 10.1016/j.apcata.2007.03.013
Han, 2009, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal. A, 359, 25, 10.1016/j.apcata.2009.02.043
Ola, 2015, Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction, Appl. Catal. A, 502, 114, 10.1016/j.apcata.2015.06.007
Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Cheminform, 38, 10.1002/chin.200741216
Ozcan, 2007, Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation, Appl. Catal. B Environ., 71, 291, 10.1016/j.apcatb.2006.09.015
Nguyen, 2008, Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight, Catal. Commun., 9, 2073, 10.1016/j.catcom.2008.04.004
Thampi, 1987, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure, Nature, 327, 506, 10.1038/327506a0
Qin, 2013, Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film, Appl. Catal. B, 129, 599, 10.1016/j.apcatb.2012.10.012
Wang, 2010, Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts, J. Phys. Chem. Lett., 1, 48, 10.1021/jz9000032
Abou Asi, 2011, Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light, Catal. Today, 175, 256, 10.1016/j.cattod.2011.02.055
Wang, 2011, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts, J. Mater. Chem., 21, 13452, 10.1039/c1jm12367j
Li, 2012, Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation, Chem. Eng. J., 180, 151, 10.1016/j.cej.2011.11.029
Wang, 2013, Ordered mesoporous CeO2–TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation, Appl. Catal. B, 130, 277, 10.1016/j.apcatb.2012.11.019
Beigi, 2014, Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation, J. CO2 Util., 7, 23, 10.1016/j.jcou.2014.06.003
Kočí, 2014, Sol–gel derived Pd supported TiO2–ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide, Catal. Today, 230, 20, 10.1016/j.cattod.2013.10.002
Marcì, 2014, Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light, Catal. Commun., 53, 38, 10.1016/j.catcom.2014.04.024
Sasirekha, 2006, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal. B, 62, 169, 10.1016/j.apcatb.2005.07.009
Tan, 2007, Photosynthesis of hydrogen and methane as key components for clean energy system, Sci. Technol. Adv. Mater., 8, 89, 10.1016/j.stam.2006.11.004
Wu, 2008, Application of optical-fiber photoreactor for CO2 photocatalytic reduction, Top. Catal., 47, 131, 10.1007/s11244-007-9022-7
Wu, 2009, Photocatalytic reduction of greenhouse gas CO2 to fuel, Catal. Surv. Asia, 13, 30, 10.1007/s10563-009-9065-9
Slamet, 2009, Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts, World Appl. Sci. J., 6, 112
Tseng, 2002, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal. B, 37, 37, 10.1016/S0926-3373(01)00322-8
Tseng, 2004, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, J. Catal., 221, 432, 10.1016/j.jcat.2003.09.002
Tan, 2006, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets, Catal. Today, 115, 269, 10.1016/j.cattod.2006.02.057
Krejčíková, 2012, Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications, Appl. Catal. B, 111, 119, 10.1016/j.apcatb.2011.09.024
Zhang, 2009, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst, Catal. Today, 148, 335, 10.1016/j.cattod.2009.07.081
Xie, 2001, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2, Mater. Chem. Phys., 70, 103, 10.1016/S0254-0584(00)00475-2
Yang, 2009, Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol, Catal. Lett., 131, 381, 10.1007/s10562-009-0076-y
Li, 2010, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Appl. Catal. B, 100, 386, 10.1016/j.apcatb.2010.08.015
Kocí, 2011, Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction, Catal. Today, 161, 105, 10.1016/j.cattod.2010.08.026
Wei, 2011, Characterization of Y/TiO2 nanoparticles and their reactivity for CO2 photoreduction, Appl. Mech. Mater., 55, 1506, 10.4028/www.scientific.net/AMM.55-57.1506
Zhao, 2012, Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites, Catal. Sci. Technol., 2, 2558, 10.1039/c2cy20346d
Collado, 2013, Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors, Chem. Eng. J., 224, 128, 10.1016/j.cej.2012.12.053
Kwak, 2015, Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient, Fuel, 143, 570, 10.1016/j.fuel.2014.11.066
Liu, 2015, Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity, Appl. Catal. B, 168–169, 125, 10.1016/j.apcatb.2014.12.011
Tang, 2014, CeF3/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission and its application for photocatalytic reduction of CO2, J. Lumin., 154, 305, 10.1016/j.jlumin.2014.04.040
Ola, 2014, Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts, J. Catal., 309, 300, 10.1016/j.jcat.2013.10.016
Rani, 2014, Solar spectrum photocatalytic conversion of CO2 and water vapor into hydrocarbons using TiO2 nanoparticle membranes, Appl. Surf. Sci., 289, 203, 10.1016/j.apsusc.2013.10.135
Matejova, 2014, Preparation, characterization and photocatalytic properties of cerium doped TiO2: on the effect of Ce loading on the photocatalytic reduction of carbon dioxide, Appl. Catal. B, 152, 172, 10.1016/j.apcatb.2014.01.015
Wang, 2014, High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles, RSC Adv., 4, 44442, 10.1039/C4RA07457B
Akhter, 2014, New nanostructured silica incorporated with isolated Ti material for the photocatalytic conversion of CO2 to fuels, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-158
Lee, 2013, A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis, Appl. Catal. B, 132, 445, 10.1016/j.apcatb.2012.12.024
Cheng, 2015, Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor, Appl. Energy, 147, 318, 10.1016/j.apenergy.2015.02.085
Saladin, 1995, Photosynthesis of CH4 at a TiO2 surface from gaseous H2O and CO2, J. Chem. Soc. Chem. Commun., 5, 533, 10.1039/c39950000533
Iizuka, 2011, Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A=Ca, Sr, and Ba) using water as a reducing reagent, J. Am. Chem. Soc., 133, 20863, 10.1021/ja207586e
Ogura, 1992, Visible-light-assisted decomposition of H2O and photomethanation of CO2 over CeO2–TiO2 catalyst, J. Photochem. Photobiol. A, 66, 91, 10.1016/1010-6030(92)85122-B
Li, 2014, Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films, Appl. Surf. Sci., 314, 458, 10.1016/j.apsusc.2014.07.019
Tahir, 2015, Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4, Appl. Catal. B, 162, 98, 10.1016/j.apcatb.2014.06.037
Hussain, 2015, Nanostructured TiO2/KIT-6 catalysts for improved photocatalytic reduction of CO2 to tunable energy products, Appl. Catal. B, 170–171, 53, 10.1016/j.apcatb.2015.01.007
Fan, 2010, Synergistic effect of N and Ni2+ on nanotitania in photocatalytic reduction of CO2, J. Environ. Eng., 137, 171, 10.1061/(ASCE)EE.1943-7870.0000311
Varghese, 2009, High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, Nano Lett., 9, 731, 10.1021/nl803258p
Zhao, 2012, Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst, Catal. Commun., 21, 32, 10.1016/j.catcom.2012.01.022
Xue, 2011, Preparation of C doped TiO2 photocatalysts and their photocatalytic reduction of carbon dioxide, Adv. Mater. Res., 183, 1842, 10.4028/www.scientific.net/AMR.183-185.1842
Michalkiewicz, 2014, Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst, J. CO2 Util., 5, 47, 10.1016/j.jcou.2013.12.004
Zhou, 2014, Facile in situ synthesis of graphitic carbon nitride (g-C3N4)–N–TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO, Appl. Catal. B, 158–159, 20, 10.1016/j.apcatb.2014.03.037
Phongamwong, 2015, Role of chlorophyll in spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts, Appl. Catal. B, 168–169, 114, 10.1016/j.apcatb.2014.12.022
Ni, 2007, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009
Kalyanasundaram, 2010, Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage, Curr. Opin. Biotechnol., 21, 298, 10.1016/j.copbio.2010.03.021
Cho, 2001, Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2, Environ. Sci. Technol., 35, 966, 10.1021/es001245e
Ross, 1994, Sensitized photocatalytical oxidation of terbutylazine, Sol. Energy Mater. Sol. Cells, 33, 475, 10.1016/0927-0248(94)90007-8
Mele, 2002, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)-phthalocyanine, Appl. Catal. B, 38, 309, 10.1016/S0926-3373(02)00060-7
Grätzel, 2000, Perspectives for dye-sensitized nanocrystalline solar cells, Prog. Photovoltaics Res. Appl., 8, 171, 10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
Kumar, 2011, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115, 13211, 10.1021/jp204364a
Yuan, 2012, A copper(i) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel, Dalton Trans., 41, 9594, 10.1039/c2dt30865g
Anpo, 2004, Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–visible light irradiation: approaches in realizing high efficiency in the use of visible light, Bull. Chem. Soc. Jpn., 77, 1427, 10.1246/bcsj.77.1427
Comninellis, 2015
Shon, 2008, Visible light responsive titanium dioxide (TiO2), J. Korean Ind. Eng. Chem., 19, 1
Ma, 2014, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev., 114, 9987, 10.1021/cr500008u
Sigmund, 2008
Fujii, 1998, Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix, J. Mol. Catal. A: Chem., 129, 61, 10.1016/S1381-1169(97)00132-5
Liang, 2010, Photocatalytical properties of TiO2 nanotubes, Solid State Phenom., 162, 295, 10.4028/www.scientific.net/SSP.162.295
Liu, 2010, Titania-based photocatalysts–crystal growth, doping and heterostructuring, J. Mater. Chem., 20, 831, 10.1039/B909930A
Neamen, 2012
Ashby, 2009
Fahlman, 2008
Pajot, 2013, vol. 169
Seebauer, 2009
Hanaor, 2011, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855, 10.1007/s10853-010-5113-0
Anpo, 2000, Utilization of TiO2 photocatalysts in green chemistry, Pure Appl. Chem., 72, 1265, 10.1351/pac200072071265
Anpo, 2001, The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method, Res. Chem. Intermed., 27, 459, 10.1163/156856701104202101
Anpo, 2002, Preparation of Ti/B binary oxide thin films by the ionized cluster beam (ICB) method: their photocatalytic reactivity and photoinduced superhydrophilic properties, J. Ceram. Process. Res., 3, 258
Anpo, 2003, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal., 216, 505, 10.1016/S0021-9517(02)00104-5
Umebayashi, 2002, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 63, 1909, 10.1016/S0022-3697(02)00177-4
Nie, 2009, Doping of TiO2 polymorphs for altered optical and photocatalytic properties, Int. J. Photoenergy, 1, 10.1155/2009/294042
Kocí, 2010, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2, Appl. Catal. B, 96, 239, 10.1016/j.apcatb.2010.02.030
Xin, 2007, Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts, Appl. Surf. Sci., 253, 4390, 10.1016/j.apsusc.2006.09.049
Nishimura, 2010, CO2 reforming performance and visible light responsibility of Cr-doped TiO2 prepared by sol–gel and dip-coating method, Int. J. Chem. Eng., 1, 10.1155/2010/309103
Wu, 2005, Photo reduction of CO2 to methanol via TiO2 photocatalyst, Int. J. Photoenergy, 7, 115, 10.1155/S1110662X05000176
Wu, 2008, Application of optical-fiber photoreactor for CO2 photocatalytic reduction, Top. Catal., 47, 131, 10.1007/s11244-007-9022-7
Ola, 2012, Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh–TiO2 catalyst under ultraviolet irradiation, Appl. Catal. B, 126, 172, 10.1016/j.apcatb.2012.07.024
Asahi, 2007, Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis, Chem. Phys., 339, 57, 10.1016/j.chemphys.2007.07.041
Ren, 2009, Inverse opal titania on optical fiber for the photoreduction of CO2 to CH3OH, Int. J. Chem. Reactor Eng., 7, 10.2202/1542-6580.2056
Schiavello, 1997
Liu, 2015, Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures, Ceram. Int., 41, 1049, 10.1016/j.ceramint.2014.09.027
Tahir, 2015, Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor, Appl. Surf. Sci., 338, 1, 10.1016/j.apsusc.2015.02.126
Linic, 2011, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater., 10, 911, 10.1038/nmat3151
Ovcharov, 2014, Photocatalytic reduction of carbon dioxide by water vapor on mesoporous titania modified by bimetallic Au/Cu nanostructures, Theory Exp. Chem., 50, 53, 10.1007/s11237-014-9348-8
Ohno, 2004, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A, 265, 115, 10.1016/j.apcata.2004.01.007
Kondo, 2013, Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride, Appl. Catal. B, 142, 362, 10.1016/j.apcatb.2013.05.042
Kim, 2010, Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid, Res. Chem. Intermed., 36, 127, 10.1007/s11164-010-0123-8
Di Valentin, 2007, N-doped TiO2: theory and experiment, Chem. Phys., 339, 44, 10.1016/j.chemphys.2007.07.020
Di Valentin, 2005, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B, 109, 11414, 10.1021/jp051756t
Serpone, 1994, Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations, Langmuir, 10, 643, 10.1021/la00015a010
Rehman, 2009, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170, 560, 10.1016/j.jhazmat.2009.05.064
Morikawa, 2006, Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation, Appl. Catal. A, 314, 123, 10.1016/j.apcata.2006.08.011
Morikawa, 2008, Visible-light-induced photocatalytic oxidation of carboxylic acids and aldehydes over N-doped TiO2 loaded with Fe, Cu or Pt, Appl. Catal. B, 83, 56, 10.1016/j.apcatb.2008.01.034
Huang, 2007, Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light, Appl. Surf. Sci., 253, 7029, 10.1016/j.apsusc.2007.02.048
Cong, 2007, Preparation, photocatalytic activity, and mechanism of nano-TiO2Co-doped with nitrogen and iron(III), J. Phys. Chem. C, 111, 10618, 10.1021/jp0727493
Li, 2007, Enhanced visible-light photocatalytic degradation of humic acid by palladium-modified nitrogen-doped titanium oxide, J. Am. Ceram. Soc., 90, 3863, 10.1111/j.1551-2916.2007.02036.x
Zhou, 2009, Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation, Mater. Chem. Phys., 117, 522, 10.1016/j.matchemphys.2009.06.036
Yang, 2007, Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde, J. Catal., 252, 296, 10.1016/j.jcat.2007.09.014
Yang, 2010, Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation, J. Hazard. Mater., 175, 429
Richardson, 2012, RETRACTED: manganese-and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol, Appl. Catal. B, 126, 200, 10.1016/j.apcatb.2012.07.016
Richardson, 2013, RETRACTED: heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper-and gallium-doped titania nanocomposites, Appl. Catal. B, 132, 408, 10.1016/j.apcatb.2012.11.045
Li, 2012, Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2, Appl. Catal. A, 429, 31, 10.1016/j.apcata.2012.04.001
Zhang, 2012, Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor, Appl. Catal. B, 123, 257, 10.1016/j.apcatb.2012.04.035
Liu, 1998, Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents, J. Photochem. Photobiol. A, 113, 93, 10.1016/S1010-6030(97)00318-3
Zhao, 2009, Optimal design and preparation of titania-supported CoPc using sol–gel for the photo-reduction of CO2, Chem. Eng. J., 151, 134, 10.1016/j.cej.2009.02.005
Wu, 2014, Photocatalytic Reduction of CO2 using Ti-MCM-41 photocatalysts in monoethanolamine solution for methane production, Ind. Eng. Chem. Res., 53, 11221, 10.1021/ie403742j
Dhakshinamoorthy, 2012, Photocatalytic CO2 reduction by TiO2 and related titanium containing solids, Energy Environ. Sci., 5, 9217, 10.1039/c2ee21948d
Kaneco, 1998, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger, J. Photochem. Photobiol. A, 115, 223, 10.1016/S1010-6030(98)00274-3
Zhao, 2009, Optimal design and preparation of titania-supported CoPc using sol–gel for the photo-reduction of CO2, Chem. Eng. J., 151, 134, 10.1016/j.cej.2009.02.005
Kočí, 2008, Effect of temperature, pressure and volume of reacting phase on photocatalytic CO2 reduction on suspended nanocrystalline TiO2, Collect. Czech. Chem. Commun., 73, 1192, 10.1135/cccc20081192
Herrmann, 1999, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53, 115, 10.1016/S0920-5861(99)00107-8
Yamashita, 1995, Photocatalytic synthesis of CH4 and CH3 OH from CO2 and H2O on highly dispersed active titanium oxide catalysts, Energy Convers. Manage., 36, 617, 10.1016/0196-8904(95)00081-N
Saladin, 1997, Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2, J. Chem. Soc. Faraday Trans., 93, 4159, 10.1039/a704801g
Guan, 2003, Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight, Appl. Catal. A, 249, 11, 10.1016/S0926-860X(03)00205-9
Wang, 2010, CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy, Appl. Catal. A, 380, 172, 10.1016/j.apcata.2010.03.059
Kaneco, 1999, Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2, Energy, 24, 21, 10.1016/S0360-5442(98)00070-X
Mizuno, 1996, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions, J. Photochem. Photobiol. A, 98, 87, 10.1016/1010-6030(96)04334-1
Erickson, 2011, Optofluidics for energy applications, Nat. Photonics, 5, 583, 10.1038/nphoton.2011.209
Howe, 1998, Recent developments in photocatalysis, Dev. Chem. Eng. Mineral Process., 6, 55, 10.1002/apj.5500060105
Koci, 2009, Effect of TiO2 particle size on the photocatalytic reduction of CO2, Appl. Catal. B, 89, 494, 10.1016/j.apcatb.2009.01.010
Almquist, 2002, Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity, J. Catal., 212, 145, 10.1006/jcat.2002.3783
Zhang, 1998, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102, 10871, 10.1021/jp982948+
Banerjee, 2011, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures, Nanotechnol. Sci. Appl., 4, 35, 10.2147/NSA.S9040
Braham, 2009, Review of major design and scale-up considerations for solar photocatalytic reactors, Ind. Eng. Chem. Res., 48, 8890, 10.1021/ie900859z
Shioya, 2003, Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O, Appl. Catal. A, 254, 251, 10.1016/S0926-860X(03)00487-3
Ikeue, 2001, Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties, J. Phys. Chem. B, 105, 8350, 10.1021/jp010885g
Kozák, 2010, Preparation and characterization of ZnS nanoparticles deposited on montmorillonite, J. Colloid Interface Sci., 352, 244, 10.1016/j.jcis.2010.09.016
Shan, 2010, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review, Appl. Catal. A, 389, 1, 10.1016/j.apcata.2010.08.053
Dijkstra, 2001, Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation, Catal. Today, 66, 487, 10.1016/S0920-5861(01)00257-7
Yu, 2011, Photocatalytic NO reduction with C3H8 using a monolith photoreactor, Catal. Today, 174, 141, 10.1016/j.cattod.2011.01.024
Ozcan, 2007, Dye sensitized CO2 reduction over pure and platinized TiO2, Top. Catal., 44, 523, 10.1007/s11244-006-0100-z
Look, 2013, Photocatalyzed conversion of CO2 to CH4: an excited-state acid–base mechanism, J. Phys. Chem. A, 117, 12268, 10.1021/jp401812k
Liu, 2013, Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability, Chem. Commun., 49, 3664, 10.1039/c3cc39054c
Tan, 2012, Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior, Chem. Phys. Lett., 531, 149, 10.1016/j.cplett.2012.02.016
Wang, 2012, Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals, J. Am. Chem. Soc., 134, 11276, 10.1021/ja304075b
Chen, 2000, Effect of mass transfer and catalyst layer thickness on photocatalytic reaction, AIChE J., 46, 1034, 10.1002/aic.690460515
Choi, 2001, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone, Appl. Catal. B, 31, 209, 10.1016/S0926-3373(00)00281-2
Danion, 2004, Characterization and study of a single-TiO2-coated optical fiber reactor, Appl. Catal. B, 52, 213, 10.1016/j.apcatb.2004.04.005
Peill, 1995, Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol, Environ. Sci. Technol., 29, 2974, 10.1021/es00012a013
Xu, 2008, Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light, J. Photochem. Photobiol. A, 199, 165, 10.1016/j.jphotochem.2008.05.019
Nguyen, 2008, Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier, Appl. Catal. A, 335, 112, 10.1016/j.apcata.2007.11.022
Du, 2008, A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis, Appl. Catal. A., 334, 119, 10.1016/j.apcata.2007.09.045
László Guczi, 2012
Marinangeli, 1977, Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber, AIChE J., 23, 415, 10.1002/aic.690230403
Lin, 2005, Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment, J. Appl. Electrochem., 35, 699, 10.1007/s10800-005-1364-x
Nakata, 2012, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C, 13, 169, 10.1016/j.jphotochemrev.2012.06.001
Tahir, 2013, Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor, Chem. Eng. J., 230, 314, 10.1016/j.cej.2013.06.055
Tahir, 2013, Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor, Appl. Catal. A, 467, 483, 10.1016/j.apcata.2013.07.056
Singh, 2007, Radiation field optimization in photocatalytic monolith reactors for air treatment, AIChE J., 53, 678, 10.1002/aic.11093
Hossain, 1999, Three-dimensional developing flow model for photocatalytic monolith reactors, AIChE J., 45, 1309, 10.1002/aic.690450615
Liou, 2011, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor, Energy Environ Sci, 4, 1487, 10.1039/c0ee00609b
Ola, 2014, Copper based TiO2 honeycomb monoliths for CO2 photoreduction, Catal. Sci. Tech., 4, 1631, 10.1039/C3CY00991B
Merajin, 2013, Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet, J. Taiwan Inst. Chem. Eng., 44, 239, 10.1016/j.jtice.2012.11.007
Nishimura, 2009, CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrane, Catal. Today, 148, 341, 10.1016/j.cattod.2009.07.067
Pathak, 2005, Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction, Green Chem., 7, 667, 10.1039/b507103h
Cybula, 2012, Carbon dioxide photoconversion. The effect of titanium dioxide immobilization conditions and photocatalyst type, Physicochem. Prob. Mineral Process., 48, 159
Chong, 2010, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039
Xing, 2014, Highly-dispersed boron-doped graphene nanosheets loaded with TiO2 nanoparticles for enhancing CO2 photoreduction, Sci. Rep., 4, 1
Zhang, 2015, Photoreduction of carbon dioxide by graphene–titania and zeolite–titania composites under low-intensity irradiation, Mater. Sci. Semicond. Process., 30, 162, 10.1016/j.mssp.2014.09.049
Baeissa, 2014, Green synthesis of methanol by photocatalytic reduction of CO2 under visible light using a graphene and tourmaline co-doped titania nanocomposites, Ceram. Int., 40, 12431, 10.1016/j.ceramint.2014.04.094
Tan, 2015, Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane, Appl. Catal. B, 166–167, 251, 10.1016/j.apcatb.2014.11.035
Gui, 2014, Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane, Appl. Surf. Sci., 319, 37, 10.1016/j.apsusc.2014.07.161
Low, 2014, Two-dimensional layered composite photocatalysts, Chem. Commun., 50, 10768, 10.1039/C4CC02553A
Fan, 2013, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion, Phys. Chem. Chem. Phys., 15, 2632, 10.1039/c2cp43524a
Tu, 2012, Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels, Adv. Funct. Mater., 22, 1215, 10.1002/adfm.201102566
Gui, 2014, Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane, Sol. Energy Mater. Sol. Cells, 122, 183, 10.1016/j.solmat.2013.11.034
Choy, 2003, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48, 57, 10.1016/S0079-6425(01)00009-3
Galindo, 2000, High quality YBa2Cu3O7−δ/PrBa2Cu3O7−δ multilayers grown by pulsed injection MOCVD, J. Cryst. Growth, 208, 357, 10.1016/S0022-0248(99)00405-4
Ying, 2008, Doped-TiO2 photocatalysts and synthesis methods to prepare TiO2 films, J. Mater. Sci. Technol., 24, 675
Liu, 2000, An improvement on sol–gel method for preparing ultrafine and crystallized titania powder, Mater. Sci. Eng., 289, 241, 10.1016/S0921-5093(00)00901-1
Meille, 2006, Review on methods to deposit catalysts on structured surfaces, Appl. Catal. A, 315, 1, 10.1016/j.apcata.2006.08.031
Akpan, 2010, The advancements in sol–gel method of doped-TiO2 photocatalysts, Appl. Catal. A, 375, 1, 10.1016/j.apcata.2009.12.023
Wang, 1999, Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater., 11, 3113, 10.1021/cm990180f
Sivakumar, 2004, Nanoporous titania–alumina mixed oxides—an alkoxide free sol–gel synthesis, Mater. Lett., 58, 2664, 10.1016/j.matlet.2004.03.050
Li, 2004, Low-temperature synthesis and microstructural control of titania nano-particles, J. Solid State Chem., 177, 1372, 10.1016/j.jssc.2003.11.016
Wu, 2001, Synthesis of titania-supported copper nanoparticles via refined alkoxide Sol–gel process, J. Nanoparticle Res., 3, 113, 10.1023/A:1017553125829
Su, 2004, Sol–gel preparation and photocatalysis of titanium dioxide, Catal. Today, 96, 119, 10.1016/j.cattod.2004.06.132
Nishimura, 2012, CO2 reforming characteristics under visible light response of Cr-or Ag-doped TiO2 prepared by sol–gel and dip-coating process, Int. J. Photoenergy, 1, 10.1155/2012/184169
Langlet, 2003, Liquid phase processing and thin film deposition of titania nanocrystallites for photocatalytic applications on thermally sensitive substrates, J. Mater. Sci., 38, 3945, 10.1023/A:1026150213468
Zhang, 2008, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed., 47, 1766, 10.1002/anie.200704788
Vijayan, 2010, Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes, J. Phys. Chem. C, 114, 12994, 10.1021/jp104345h
Schulte, 2010, Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light, Appl. Catal. B, 97, 354, 10.1016/j.apcatb.2010.04.017
Nair, 1999, Microstructure and phase transformation behavior of doped nanostructured titania, Mater. Res. Bull., 34, 1275, 10.1016/S0025-5408(99)00113-0
Liu, 2012, Engineering TiO2 nanomaterials for CO2 conversion/solar fuels, Sol. Energy Mater. Sol. Cells, 105, 53, 10.1016/j.solmat.2012.05.037
Carneiro, 2011, How phase composition influences optoelectronic and photocatalytic properties of TiO2, J. Phys. Chem. C, 115, 2211, 10.1021/jp110190a
Yang, 2010, Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction?, J. Am. Chem. Soc., 132, 8398, 10.1021/ja101318k
Cybula, 2015, Methane formation over TiO2-based photocatalysts: reaction pathways, Appl. Catal. B, 164, 433, 10.1016/j.apcatb.2014.09.038
Yui, 2011, Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2, ACS Appl. Mater. Interfaces, 3, 2594, 10.1021/am200425y
Teramura, 2012, Photocatalytic conversion of CO2 in water over layered double hydroxides, Angew. Chem. Int. Ed., 51, 8008, 10.1002/anie.201201847
Liu, 1997, Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices, J. Photochem. Photobiol. A, 108, 187, 10.1016/S1010-6030(97)00082-8
Fu, 2012, An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew. Chem. Int. Ed., 51, 3364, 10.1002/anie.201108357
Ohno, 2014, Photocatalytic reduction of CO2 over exposed-crystal-face-controlled TiO2 nanorod having a brookite phase with co-catalyst loading, Appl. Catal. B, 152, 309, 10.1016/j.apcatb.2014.01.048
Ohno, 2014, Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light, J. CO2 Util., 6, 17, 10.1016/j.jcou.2014.02.002
Lee, 2014, Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst, J. CO2 Util., 5, 33, 10.1016/j.jcou.2013.12.002
Silija, 2012, An enthusiastic glance in to the visible responsive photocatalysts for energy production and pollutant removal, with special emphasis on titania, Int. J. Photoenergy, 1, 10.1155/2012/503839
Nishida, 2000, In-situ monitoring of PE-CVD growth of TiO2 films with laser Raman spectroscopy, Appl. Surf. Sci., 159, 143, 10.1016/S0169-4332(00)00067-2
Perego, 1999, Experimental methods in catalytic kinetics, Catal. Today, 52, 133, 10.1016/S0920-5861(99)00071-1
Van Gerven, 2007, A review of intensification of photocatalytic processes, Chem. Eng. Process., 46, 781, 10.1016/j.cep.2007.05.012
Lin, 2006, An optical fiber monolith reactor for photocatalytic wastewater treatment, AIChE J., 52, 2271, 10.1002/aic.10823
Sun, 2000, TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds, J. Photochem. Photobiol. A, 136, 111, 10.1016/S1010-6030(00)00330-0
Mukherjee, 1999, Major challenges in the design of a large-scale photocatalytic reactor for water treatment, Chem. Eng. Technol., 22, 253, 10.1002/(SICI)1521-4125(199903)22:3<253::AID-CEAT253>3.0.CO;2-X
Ray, 1999, Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment, Chem. Eng. Sci., 54, 3113, 10.1016/S0009-2509(98)00507-7
Wang, 2015, Photocatalytic reduction of CO2 to energy products using Cu–TiO2/ZSM-5 and Co–TiO2/ZSM-5 under low energy irradiation, Catal. Commun., 59, 69, 10.1016/j.catcom.2014.09.030
Sánchez, 1999, Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts, Catal. Today, 54, 369, 10.1016/S0920-5861(99)00197-2
Carneiro, 2009, An internally illuminated monolith reactor: pros and cons relative to a slurry reactor, Catal. Today, 147, S324, 10.1016/j.cattod.2009.07.041
Wang, 2003, The light transmission and distribution in an optical fiber coated with TiO2 particles, Chemosphere, 50, 999, 10.1016/S0045-6535(02)00641-0