Review of low-cost point-of-use water treatment systems for developing communities

npj Clean Water - Tập 1 Số 1
Ching Kwek Pooi1, How Yong Ng1
1Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore, 117576, Singapore

Tóm tắt

Abstract

For communities in developing countries, the majority of drinking water-related issues are due to pathogens from poor sanitation, resulting in infection and diarrhea. One cause of this is that these communities often do not have access to centralized water treatment facilities. Point-of-use (POU) systems are key solutions for treating water in developing communities; they are typically user-friendly, low cost, low maintenance, and grid-independent. Importantly, they treat and reduce the number of pathogens in water supplies, and many POU systems have been deployed and used by these communities, improving their livelihood. This review focuses on POU systems that cater to households or communities, with the aim to examine and evaluate technologies that have been implemented in POU systems in the past decade.

Từ khóa


Tài liệu tham khảo

UNICEF. Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment (World Health Organization, 2015). https://doi.org/10.1007/s13398-014-0173-7.2.

UNICEF. A Mid-Term Assessment of Progress. Meeting the Development. (2004).

Griffiths, J. K. Waterborne diseases. in International Encyclopedia of Public Health, Vol. 7 (Elsevier, 2008).

Plutzer, J. & Karanis, P. Neglected waterborne parasitic protozoa and their detection in water. Water Res. 101, 318–332 (2016).

Pegram, G. C., Rollins, N. & Espey, Q. Estimating the costs of diarrhoea and epidemic dysentery in KwaZulu-Natal and South Africa. Water SA 24, 11–20 (1998).

WHO. Diarrhoeal Disease. Fact Sheets 1–4 (2017). Available at: http://www.who.int/mediacentre/factsheets/fs330/en/.

Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).

Nienie, A. B. et al. Microbiological quality of water in a city with persistent and recurrent waterborne diseases under tropical sub-rural conditions: the case of Kikwit City, Democratic Republic of the Congo. Int. J. Hyg. Environ. Health 220, 820–828 (2017).

Efstratiou, A., Ongerth, J. E. & Karanis, P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2011–2016. Water Res. 114, 14–22 (2017).

WHO. Guidelines for Drinking-water Quality, Vol. 1 (World Health Organization, 2006).

Betancourt, W. Q. & Rose, J. B. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet. Parasitol. 126, 219–234 (2004).

Mankad, A. & Tapsuwan, S. Review of socio-economic drivers of community acceptance and adoption of decentralised water systems. J. Environ. Manag. 92, 380–391 (2011).

Ramavandi, B. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata. Water Resour. Ind. 6, 36–50 (2014).

Ratnayaka, D. D., Brandt, M. J. & Johnson, K. M. Disinfection of water. Water Supply. (2009). https://doi.org/10.1016/B978-0-7506-6843-9.00019-6.

Metcalf & Eddy. Wastewater Engineering Treatment and Reuse (McGraw-Hill, 2003).

Jiang, J. Q. The role of coagulation in water treatment. Curr. Opin. Chem. Eng. 8, 36–44 (2015).

Crump, J. A. et al. Effect of point-of-use disinfection, flocculation and combined flocculation—disinfection on drinking quality in western Kenya. J. Appl. Microbiol. 97, 225–231 (2004).

Nicholas, R. D., Kim, R. F., James, H. O. & Richard, J. M. Controlling Cryptosporidium oocysts using conventional treatment. Am. Water Works Assoc. 93, 64–76 (2001).

Abebe, L. S., Chen, X. & Sobsey, M. D. Chitosan coagulation to improve microbial and turbidity removal by ceramicwater filtration for household drinking water treatment. Int. J. Environ. Res. Public Health 13, (2016).

Sobsey, M. D. Managing water in the home: accelerated health gains from improved water supply. World Health 8, 1–83 (2004).

Souter, P. F. et al. Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water. J. Water Health 1, 73–84 (2003).

Baddache, F. Procter & Gamble: Providing Safe Drinking Water to the Poor The Need for Drinkable Water in Developing Countries. (2007).

Reller, M. E. et al. A randomized controlled trial of household-based flocculant-disinfectant drinking water treatment for diarrhoea prevention in rural Guatemala. Am. J. Trop. Med. Hyg. 69, 441–449 (2003).

Sung, M. H. et al. Natural and edible biopolymer poly-gama-glutamic acid: synthesis, production, and applications. Chem. Rec. 5, 352–366 (2005).

Salehizadeh, H. & Yan, N. Recent advances in extracellular biopolymer flocculants. Biotechnol. Adv. 32, 1506–1522 (2014).

Campos, V., Fernandes, A. R. A. C., Medeiros, T. A. M. & Andrade, E. L. Physicochemical characterization and evaluation of PGA bioflocculant in coagulation–flocculation and sedimentation processes. J. Environ. Chem. Eng. 4, 3753–3760 (2016).

Carvajal-Zarrabal, O. et al. Treatment of vinasse from tequila production using polyglutamic acid. J. Environ. Manag. 95, S66–S70 (2012).

Gargouri, B., Karray, F., Mhiri, N., Aloui, F. Sayadi, S. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. J. Hazard. Mater. 189, 427–434 (2011).

Taniguchi, M. et al. Proposals for wastewater treatment by applying flocculating activity of cross-linked poly-γ-glutamic acid. J. Biosci. Bioeng. 99, 245–251 (2005).

PolyGlu International. What is PolyGlu? Coagulants Polyglutamate. Available at: http://www.polyglu.net/polyglu_e/aboutus/index.html. (Accessed 2 Jul 2017).

Mark, S. S., Crusberg, T. C., DaCunha, C. M. & Di Iorio, A. A. A heavy metal biotrap for wastewater remediation using poly-γ-glutamic acid. Biotechnol. Prog. 22, 523–531 (2006).

Mutou, M. & Hirota, F. US 2011/0046040 A1. 10 (2011).

Keeley, J., Jarvis, P., Smith, A. D. & Judd, S. J. Coagulant recovery and reuse for drinking water treatment. Water Res. 88, 502–509 (2016).

Jeon, S. B. et al. Self-powered electro-coagulation system driven by a wind energy harvesting triboelectric nanogenerator for decentralized water treatment. Nano Energy 28, 288–295 (2016).

Stauber, C. E. et al. Characterisation of the biosand filter for E. coli reductions from household drinking water under controlled laboratory and field use conditions. Water Sci. Technol. 54, 1–7 (2006).

Wang, H. et al. MS2 bacteriophage reduction and microbial communities in biosand filters. Environ. Sci. Technol. 48, 6702–6709 (2014).

Ahammed, M. M. & Davra, K. Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination 276, 287–293 (2011).

Elliott, M. A., Stauber, C. E., Koksal, F., DiGiano, F. A. & Sobsey, M. D. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 42, 2662–2670 (2008).

Bradley, I., Straub, A., Maraccini, P., Markazi, S. & Nguyen, T. H. Iron oxide amended biosand filters for virus removal. Water Res. 45, 4501–4510 (2011).

Snyder, K. V., Webster, T. M., Upadhyaya, G., Hayes, K. F. & Raskin, L. Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater. J. Environ. Manag. 171, 21–28 (2016).

Liang, K., Sobsey, M. & Stauber, C. Improving Household Drinking Water Quality—Use of BioSand Filters in Cambodia. Water and Sanitation Program. (2010).

Clasen, T. F., Roberts, I. G., Rabie, T., Schmidt, W. P. & Cairncross, S. Interventions to improve water quality for preventing diarrhoea. Cochrane Database Syst. Rev. 3, (2006).

Palit, D. & Chaurey, A. Off-grid rural electrification experiences from South Asia. Green Energy Technol. 116, 75–104 (2013).

Setsco Services. Test Report. (2017).

Biological Consulting Services. Biological Filtration Efficacy Test Study of the Provided Icon Lifesaver® Jerrycan Filter Units. (2016).

SkyJuice Foundation. Skyhydrant Ultrafiltration Unit—User Guide Data Sheet. 1–24. Available at: http://www.skyjuice.org.au/wp-content/uploads/2016/10/SJ_SkyHydrant_UserGuide_DataSheet.pdf. (Accessed 3 Jul 2017).

The Gold Standard. Production and Dissemination of Ceramic Water Purifiers (CWPs) by Hydrologic, in the Kingdom of Cambodia. (2012).

Pérez-Vidal, A., Diaz-Gómez, J., Castellanos-Rozo, J. & Usaquen-Perilla, O. L. Long-term evaluation of the performance of four point-of-use water filters. Water Res. 98, 176–182 (2016).

Frechen, F. B., Exler, H., Romaker, J. & Schier, W. Long-term behaviour of a gravity-driven dead end membrane filtration unit for potable water supply in cases of disasters. Water Sci. Technol. Water Supply 11, 39–44 (2011).

Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S. & Nyamasoka, B. Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. J. Environ. Manag. 150, 250–261 (2015).

Gwenzi, W., Chaukura, N., Noubactep, C. & Mukome, F. N. D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 197, 732–749 (2017).

Judd, S. & Judd, C. The MBR Book (Butterworth-Heinemann, 2011). https://doi.org/10.1016/B978-0-08-096682-3.10002-2.

Wimalawansa, S. J. Purification of contaminated water with reverse osmosis: effective solution of providing clean water for human needs in developing countries. Int. J. Emerg. Technol. Adv. Eng. 3, 75–89 (2013).

Gao, W. et al. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272, 1–8 (2011).

Wegelin, M., Canonica, S., Mechsner, K., Pesaro, F. & Metzler, A. Solar water disinfection: scope of the process and analysis of radiation experiments. J. Water Supply: Res. Technol. – AQUA 43, 154–169 (1994).

Berney, M., Weilenmann, H. U., Simonetti, A. & Egli, T. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae. J. Appl. Microbiol. 101, 828–836 (2006).

McGuigan, K. G., Joyce, T. M., Conroy, R. M., Gillespie, J. B. & Elmore-Meegan, M. Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process. J. Appl. Microbiol. 84, 1138–1148 (1998).

Martín-Domínguez, A., Alarcón-Herrera, M. T., Martín-Domínguez, I. R. & González-Herrera, A. Efficiency in the disinfection of water for human consumption in rural communities using solar radiation. Sol. Energy 78, 31–40 (2005).

Keogh, M. B. et al. Capability of 19-L polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): field case studies in India, Bahrain and Spain. Sol. Energy 116, 1–11 (2015).

Kalt, P. et al. A solar disinfection water treatment system for remote communities. Procedia Eng. 78, 250–258 (2014).

Lawrie, K. et al. UV dosimetry for solar water disinfection (SODIS) carried out in different plastic bottles and bags. Sens. Actuators B, Chem. 208, 608–615 (2015).

Fisher, M. B., Iriarte, M. & Nelson, K. L. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials. Water Res. 46, 1745–1754 (2012).

Danwittayakul, S., Songngam, S., Fhulua, T., Muangkasem, P. Sukkasi, S. Safety and durability of low-density polyethylene bags in solar water disinfection applications. Environ. Technol. 3330, 1–10 (2016).

Mäusezahl, D. et al. Solar drinking water disinfection (SODIS) to reduce childhood diarrhoea in rural Bolivia: a cluster-randomized, controlled trial. PLoS Med. 6, (2009).

Fisher, M. B., Keenan, C. R., Nelson, K. L. & Voelker, B. M. Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. J. Water Health 6, 35–51 (2008).

Helioz. WADI—The Indicator for SoDis. 17–20 (2017). Available at: https://www.helioz.org/overview.php. (Accessed 7 Jul 2017).

Tesh, S. J. & Scott, T. B. Nano-composites for water remediation: a review. Adv. Mater. 26, 6056–6068 (2014).

Gupta, A. K., Deva, D., Sharma, A., & Verma, N. Fe-grown carbon nanofibers for removal of arsenic (V) in wastewater. Industrial and Engineering Chemistry Research 49, 7074–7084 (2010).

Yin, J. & Deng, B. Polymer–matrix nanocomposite membranes for water treatment. J. Memb. Sci. 479, 256–275 (2015).

Vance, M. E. et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015).

Alrousan, D. M. A., Polo-López, M. I., Dunlop, P. S. M., Fernández-Ibáñez, P. & Byrne, J. A. Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl. Catal. B 128, 126–134 (2012).

Fujishima, A., Rao, T. N. & Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1–21 (2000).

Owen, M., Thorne, J. & Sammi, M. K. Ultraviolet photoreactor for the purification of fluids. (2013).

Laxma Reddy, P. V., Kavitha, B., Kumar Reddy, P. A. & Kim, K. H. TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ. Res. 154, 296–303 (2017).

Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182 (2004).

Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).

Choi, Y., Kim, H.-A., Kim, K.-W. & Lee, B.-T. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. 1–11 (2017). https://doi.org/10.1016/j.jes.2017.04.028.

Shrivastava, S. et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 225103 (2007).

Kallman, E. N., Oyanedel-Craver, V. A. & Smith, J. A. Ceramic filters impregnated with silver nanoparticles for point-of-use water treatment in rural Guatemala. J. Environ. Eng. 137, 407–415 (2010).

Jain, P. & Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59–63 (2005).

Castro-Mayorga, J. L. et al. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT—Food Sci. Technol. 79, 503–510 (2017).

Huy, T. Q. et al. Cytotoxicity and antiviral activity of electrochemical-synthesized silver nanoparticles against poliovirus. J. Virol. Methods 241, 52–57 (2017).

You, J., Zhang, Y. & Hu, Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B, Biointerfaces 85, 161–167 (2011).

He, D., Ikeda-Ohno, A., Boland, D. D. & Waite, T. D. Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. Environ. Sci. Technol. 47, 5276–5284 (2013).

Dankovich, T. A. Bactericidal Paper Containing Silver Nanoparticles for Water Treatment. 1992–1998 (2012).

Theresa, A. D., Jonathan, S. L., Natasha, P., Rebecca, D. & James, A. S. Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver- or copper-nanoparticle paper filters. Environ. Sci. 16, 700–710 (2015).

Lin, D. et al. Role of pH and ionic strength in the aggregation of TiO2 nanoparticles in the presence of extracellular polymeric substances from Bacillus subtilis. Environ. Pollut. 228, 35–42 (2017).

Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007).

Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S. & Lead, J. R. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int. 37, 517–531 (2011).

Tran, Q. H., Nguyen, V. Q. & Le, A.-T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 33001 (2013).

Fabiszewski De Aceituno, A. M., Stauber, C. E., Walters, A. R., Meza Sanche, R. E. & Sobsey, M. D. A randomized controlled trial of the plastic-housing BioSand filter and its impact on diarrheal disease in Copan, Honduras. Am. J. Trop. Med. Hyg. 86, 913–921 (2012).

Stauber, C. E., Kominek, B., Liang, K. R., Osman, M. K. & Sobsey, M. D. Evaluation of the impact of the plastic biosand filter on health and drinking water quality in rural tamale, Ghana. Int. J. Environ. Res. Public Health 9, 3806–3823 (2012).

Stauber, C. E., Ortiz, G. M., Loomis, D. P. & Sobsey, M. D. A randomized controlled trial of the concrete biosand filter and its impact on diarrheal disease in Bonao, Dominican Republic. Am. J. Trop. Med. Hyg. 80, 286–293 (2009).

Tiwari, S. S. K., Schmidt, W. P., Darby, J., Kariuki, Z. G. & Jenkins, M. W. Intermittent slow sand filtration for preventing diarrhoea among children in Kenyan households using unimproved water sources: randomized controlled trial. Trop. Med. Int. Health 14, 1374–1382 (2009).

Duke, W. F., Nordin, R. N., Baker, D. & Mazumder, A. The use and performance of Biosand filters in the Artibonite Valley of Haiti: a field study of 107 households. Rural Remote Health 6, 570 (2006).

Vestergaard. LifeStraw Evidence Dossier. (2015).

Rose, A. Solar disinfection of water for diarrhoeal prevention in southern India. Arch. Dis. Child. 91, 139–141 (2005).

Mcguigan, K. G., Samaiyar, P., Du Preez, M., An, R. & Conroy, M. High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in Rural Cambodia. Environ. Sci. Technol. 45, 7862–7867 (2011).