Review of in-space assembly technologies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Williams PA, Dempsey JA, Hamill D, et al. Space science and technology partnership forum: Value proposition, strategic framework, and capability needs for in-space assembly. 2018 AIAA SPACE and Astronautics Forum and Exposition; 2018 Sept 17-19; Orlando, FL. Reston: AIAA; 2018.
Sullivan, 2001, Survey of serviceable spacecraft failures
Dorsey, 2016, Space assembly of large structural system architectures (SALSSA)
Mohan, 2006, Operational impact of mass property update for on-orbit assembly, 2006
Piskorz, 2018, On-orbit assembly of space assets: A path to affordable and adaptable space infrastructure, The Aerospace Corporation
Watson JJ, Collins TJ, Bush HG. A history of astronaut construction of large space structures at NASA Langley Research Center. Proceedings of IEEE Aerospace Conference; 2002 Mar 9-16; Big Sky, MT. Piscataway: IEEE Press; 2002.
Whittaker W, Urmson C, Staritz P, et al. Robotics for assembly, inspection, and maintenance of space macrofacilities. Proceedings of AIAA Space 2000 Conference and Exposition; 2000; Reston. AIAA; 2000.
Nishida S-i, Yoshikawa T. A new end-effector for on-orbit assembly of a large reflector. 2006 9th International Conference on Control, Automation, Robotics and Vision; 2006 Dec 5-8; Singapore, Singapore. Piscataway: IEEE Press; 2006. p. 1-6.
Barnhart D, Will P, Sullivan B, et al. Creating a sustainable assembly architecture for next-gen space: The Phoenix effect. 30th Space Symposium; 2014 May; Colorado Springs. 2014.
Gralla, 2006
Jefferies SA, Jones CA, Arney DC, et al. In-space assembly capability assessment for potential human exploration and science applications. AIAA Space and Astronautics Forum and Exposition; 2017 Sept 12 - 14; Orlando, FL, United states. Reston: AIAA; 2017.
Li, 2019, On-orbit service (OOS) of spacecraft: A review of engineering developments, Prog in Aerosp Sci, 108, 32, 10.1016/j.paerosci.2019.01.004
Thronson H, Peterson BM, Greenhouse M, et al. Human space flight and future major space astrophysics missions: servicing and assembly. In: MacEwen HA, Breckinridge JB, editors. Uv/Optical/Ir Space Telescopes and Instruments: Innovative Technologies and Concepts Viii; 2017.
Sato N. JAXA's space exploration scenario. LPICo 2018;2070:6031.
Eckersley S, Saunders C, Gooding D, et al. In-orbit assembly of large spacecraft using small spacecraft and innovative technologies. 69th International Astronautical Congress (IAC); 2018 Oct 1-5; Bremen, Germany. Paris: International Astronautical Federation (IAF); 2018.
Gallagher WJ, Solberg K, Gefke GG, et al. A survey of enabling technologies for in-space assembly and servicing. 2018 AIAA SPACE and Astronautics Forum and Exposition; 2018 Sept 17-19; Orlando, FL. Reston: AIAA; 2018.
Heard Jr WL, Bush HG, Wallson RE, et al. A mobile work station concept for mechanically aided astronaut assembly of large space trusses. Hampton: NASA Langley Research Center; 1983. Report No.: NASA-TP-2108, L-15523.
Rhodes MD, Will RW, Wise MA. A telerobotic system for automated assembly of large space structures. Hampton: NASA Langley Research Center; 1989. Report No.: NASA-TM-101518.
Bement LJ, Bush HG, Heard WL, Jr., et al. EVA assembly of large space structure element. Hampton: NASA Langley Research Center; 1981. Report No.: NASA-TP-1872, L-14353.
Watson JJ, Heard WL, Jr., Jensen JK. Swing-arm beam erector (SABER) concept for single astronaut assembly of space structure. Hampton: NASA Langley Research Center; 1985. Report No.: NASA-TP-2379, L-15886.
W. HEARD J, WATSON J, ROSS J, et al. Results of the ACCESS space construction Shuttle flight experiment. 2nd Aerospace Maintenance Conference; 1986 May 21-23; San Antonio,TX,U.S.A. Reston: AIAA; 2012.
Heard WL, Jr., Watson JJ, Lake MS, et al. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the space station freedom truss. Hampton: NASA Langley Research Center; 1992. Report No.: NASA-TP-3245.
Lake MS, Heard WL, Jr., Watson JJ, et al. Evaluation of hardware and procedures for astronaut assembly and repair of large precision reflectors. Hampton, VA: NASA Langley Research Center; 2000. Report No.: NASA/TP-2000-210317.
On-orbit satellite servicing study project report. Greenbelt, MD: GSFC; 2010. Report No.: NP-2010-08-162-GSFC.
Patane S, Joyce ER, Snyder MP, et al. Archinaut: In-space manufacturing and assembly for next-generation space habitats. AIAA SPACE and Astronautics Forum and Exposition; 2017 Sept 12-14; Orlando, FL. Reston: AIAA; 2017.
Jefferies SA, Arney DC, Jones CA, et al. Impacts of in-space assembly as applied to human exploration architectures. 2018 AIAA SPACE and Astronautics Forum and Exposition; 2018 Sept 17-19; Orlando, FL, United states. Reston; 2018.
Zimpfer D, Kachmar P, Tuohy S. Autonomous rendezvous, capture and in-space assembly: past, present and future. 1st Space Exploration Conference: Continuing the Voyage of Discovery; 2005 Jan 30-Feb 1; Orlando, Florida. Reston: AIAA; 2005.
Moe R. An early in-space platform for technology development & demonstration of robotic assembly and servicing. 1st Space Exploration Conference: Continuing the Voyage of Discovery; 2005 Jan 30-Feb 1; Orlando, Florida. Reston: AIAA; 2005.
Goetz T, Dark-fox T, Mayer J. Building the international space station: some assembly required. International Air & Space Symposium and Exposition; 2005 Jul 14-17; Dayton, Ohio. Reston: AIAA; 2005.
Staritz PJ, Skaff S, Urmson C, et al. Skyworker: a robot for assembly, inspection and maintenance of large scale orbital facilities. Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation; 2001 May 21-26; Seoul, South Korea. Piscataway: IEEE Press; 2003.
Skaff S, Staritz P, Whittaker W. Skyworker: Robotics for space assembly, inspection and maintenance. Proceedings of Space Studies Institute Conference; 2001 Jan; Seoul, South Korea, South Korea.
Rumford T. Demonstration of autonomous rendezvous technology (DART) project summary. AEROSENSE 2003; 2003 Apr 21-25; Orlando, Florida. Bellingham: SPIE; 2003.
Summary of DART accident report [internet]. NASA; 2007 [cited 2020 Jun 12]. Available from: https://www.nasa.gov/mission_pages/dart/main/.
Bosse AB, Barnds WJ, Brown MA, et al. SUMO: spacecraft for the universal modification of orbits. Spacecraft Platforms and Infrastructure; 2004 Apr 14; Orlando, FL. Bellingham: SPIE; 2004.
Friend RB. Orbital express program summary and mission overview. Sensors and Systems for space applications II; 2008 Mar 16-20; Orlando, Florida, United States. Bellingham: SPIE; 2008.
Lillie CF. On-orbit assembly and servicing of future space observatories. Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter; 2006 Sept 19-21; San Jose, California. Reston: AIAA; 2006.
Chen, 2013, Key technology analysis and enlightenment of Phoenix Program, Space Eng, 22, 119
NovaWurks prepares self assembling spacecraft for LEO demonstration [internet]. Wagenen JV; 2016 [cited 2020 Mar 11]. Available from: https://www.satellitetoday.com/innovation/2016/01/27/novawurks-prepares-self-assembling-spacecraft-for-leo-demonstration/.
Bluethmann, 2003, Robonaut: A robot designed to work with humans in space, Auton Robots, 14, 179, 10.1023/A:1022231703061
Diftler MA, Mehling J, Abdallah ME, et al. Robonaut 2-the first humanoid robot in space. 2011 IEEE international conference on robotics and automation; 2011 May 9-13; Shanghai, China. Piscataway: IEEE Press; 2011. p. 2178-83.
Diftler, 2006, Reconfiguration of EVA modular truss assemblies using an anthropomorphic robot, AIP Conf Proc, 813, 992, 10.1063/1.2169280
Hoyt RP, Cushing J, Jimmerson G, et al. SpiderFab: Process for on-orbit construction of kilometer-scale apertures. Bothell: Tethers Unlimited, Inc.; 2013. Report No.: NNX12AR13G.
Dorsey J, Doggett W, Hafley R, et al. An efficient and versatile means for assembling and manufacturing systems in space. AIAA SPACE 2012 Conference & Exposition; 2012 Sept 11-13; Pasadena, California. Reston: AIAA; 2012.
Mercer CR, McGuire M, Oleson SR. Solar electric propulsion concepts for human space exploration. AIAA SPACE 2015 Conference and Exposition; 2015 Aug 31-Sept 2; Pasadena, California. Reston: AIAA; 2015.
Komendera EE, Dorsey J. Initial validation of robotic operations for in-space assembly of a large solar electric propulsion transport vehicle. AIAA SPACE and Astronautics Forum and Exposition; 2017 Sept 12-14. Reston: AIAA; 2017.
Kwan H, Bassett Z, Finch P. System architecture design for an in-space assembly concept using SEP to transfer payloads from LEO to LDRO. AIAA SPACE and Astronautics Forum and Exposition; 2017 Sept 12 - 14; Orlando, FL. Reston: AIAA; 2017.
Belvin WK, Doggett WR, Watson JJ, et al. In-space structural assembly: Applications and technology. 3rd AIAA Spacecraft Structures Conference; 2016 Jan 4-8; San Diego, California, USA. Reston: AIAA; 2016.
Bowman LM, Belvin WK, Komendera EE, et al. In-Space assembly applications and technology for NASA’s future science observatory and platform missions. In: Lystrup M, MacEwen HA, Fazio GG, editors. Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave; 2018; Bellingham. SPIE; 2018. p. 1069826.
The case for in-space assembly of telescopes to advance exoplanet science [internet]. Mukherjee R; 2018 [cited 2020 Mar 5]. Available from: https://exoplanets.nasa.gov/internal_resources/839/.
Kortes In-Space Robotic Manufacturing and Assembly (IRMA) [internet]. Washington: NAC TI&E Committee; 2016 Nov 18 [cited 2020 Mar 15]. Available from: https://www.nasa.gov/directorates/spacetech/nac_ti_committee/index.html.
OSAM-2 [internet]. Washington: NASA; 2020 [cited 2020 Jun 12]. Available from: https://www.nasa.gov/mission_pages/tdm/osam-2.html.
Roa, 2017, Robotic technologies for in-space assembly operations, Adv Space Technol Rob Autom (ASTRA)
SSL selected for NASA project to develop robotic on-orbit satellite assembly [internet]. Palo Alto: SSL; 2015-10 [cited 2020 Mar 10]. Available from: http://www.sslmda.com/html/pressreleases/pr20151210.php.
Ticker RL, Cepollina F, Reed BB. NASA’s in-space robotic servicing. AIAA SPACE 2015 Conference and Exposition; 2015 Aug 31-Sept 2; Pasadena, California. Reston: AIAA; 2015.
Gefke G, Janas A, Chiei R, et al. Advances in robotic servicing technology development. AIAA SPACE 2015 Conference and Exposition; 2015 Aug 31-Sept 2; Pasadena, California. Reston: AIAA; 2015.
OSAM-1 Successfully passes key decision point-C [internet]. Washington: NASA; 2020 May 29 [cited 2020 Jun 12]. Available from: https://nexis.gsfc.nasa.gov/05292020_osam1_update.html.
OSAM-1,on-orbit servicing assembly and manfuacturing mission [internet]. Washington: NASA; 2020 [cited 2020 Jun 12]. Available from: https://nexis.gsfc.nasa.gov/osam-1.html.
HIVE [internet]. The Aerospace Corporation; 2018 [cited 2020 Mar 12]. Available from: https://aerospace.org/sites/default/files/2018-07/HIVE0318_0.pdf.
Mahoney M, Ibbott A, Randy C. A large deployable reflector assembly scenario, a space station utilization study. Pasadena: JPL; 1988. Report No.: D-5942.
Lake MS. Launching a 25-meter space telescope. Are astronauts a key to the next technically logical step after NGST? 2001 IEEE Aerospace Conference Proceedings; 2001 Mar 10-17; Big Sky, MT. Piscataway: IEEE Press; 2002.
Postman M, Sparks WB, Liu F, et al. Using the ISS as a testbed to prepare for the next generation of space-based telescopes. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave; 2012; Amsterdam, Netherlands. Bellingham: International Society for Optics and Photonics; 2012. p. 84421T.
Hamill D, Jefferies SA, Moses RW, et al. Space Science and Technology Partnership Forum: Analysis for a joint demonstration of high priority, in-space assembly technology. 2018 AIAA SPACE and Astronautics Forum and Exposition; 2018 Sept 17-19; Orlando, FL. Reston: AIAA; 2018.
Miller D, Mohan S, Budinoff J. Assembly of a Large Modular Optical Telescope (ALMOST). Space Telescopes and Instrumentation 2008 - Optical, Infrared and Millimeter; 2008 Jun 23-28; Marseille, France. Bellingham: SPIE; 2008.
Mohan, 2010
Lee, 2016, Architecture for in-space robotic assembly of a modular space telescope, J Astron Telesc Instrum Syst, 2, 1, 10.1117/1.JATIS.2.4.041207
Siegler N. Technical Interchange Meeting on Future Capabilities in-Space Servicing and Assembly (iSSA): Opportunities for Future Astrophysics Missions. Greenbelt, MD: NASA Goddard Space Flight Center; 2017. Report No.: CL#17-6653.
Troutman P, Mazanek DD, Stillwagen F, et al. Orbital aggregation and space infrastructure systems (OASIS). 53rd International Astronautical Congress–World Space Congress; 2002 Oct 10-19; Houston, Texas. NTRS; 2002.
Karumanchi S, Edelberg K, Nash J, et al. Payload-centric autonomy for in-space robotic assembly of modular space structures. J F Robot 2018;35(6): 1005-21.
NASA. Exo-S final report. Pasadena: Jet Propulsion Laboratory; 2015. Report No.: CL #15-115.
Breckinridge JB, MacEwen HA, Reed BB, et al. Human space flight and future major space astrophysics missions: servicing and assembly. In: MacEwen HA, Breckinridge JB, editors. UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII; 2017 Aug 6-10; San Diego, California. Bellingham: SPIE; 2017. p. 1039810.
Kasdin NJ, Spergel DN, Vanderbei RJ, et al. Advancing technology for starlight suppression via an external occulter. Techniques and Instrumentation for Detection of Exoplanets V; 2011. International Society for Optics and Photonics; 2011. p. 81510J.
European robotic arm [internet]
Oort M, Kouwen J, Verzijden P. The ERA system: control architecture and performances results. Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-SAIRAS; 2001 Jun 18-22; Quebec. Citeseer; 2001.
Cougnet C, Gerber B, Heemskerk C, et al. On-orbit servicing system of a GEO satellite fleet. Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation; 2006 Nov 28-30; Noordwijk, The Netherlands. Ogilvie Center, Glasgow: ASTRA; 2006.
ConeXpress-Orbital Life Extension Vehicle (CX-OLEV) [internet]. ESA; 2010 [cited 2020 Jun-14]. Available from: https://artes.esa.int/projects/conexpress-orbital-life-extension-vehicle-cx-olev.
Kaiser, 2008, SMART-OLEV - An orbital life extension vehicle for servicing commercial spacecrafts in GEO, Acta Astronaut, 63, 400, 10.1016/j.actaastro.2007.12.053
Hirzinger, 1993, Sensor-based space robotics-ROTEX and its telerobotic features, IEEE Trans Robot Autom, 9, 649, 10.1109/70.258056
Hirzinger G, Brunner B, Dietrich J, et al. ROTEX-the first remotely controlled robot in space. Proceedings of the 1994 IEEE international conference on robotics and automation; 1994 May 8-13; San Diego, CA, USA. Piscataway: IEEE Press; 2002.
Reintsema D, Landzettel K, Hirzinger G. DLR’s advanced telerobotic concepts and experiments for on-orbit servicing. In: Ferre M, Buss M, Aracil R, Melchiorri C, Balaguer C, editors. Advances in telerobotics. Berlin, Heidelberg: Springer; 2007. p. 323-45.
Settelmeyer E, Oesterlin W, Hartmann R. The Experimental Servicing Satellite - ESS. Preparing for the Future 1997;7(2).
Albu-Schaffer A, Bertleff W, Rebele B, et al. ROKVISS - robotics component verification on ISS current experimental results on parameter identification. Proceedings of 2006 IEEE International Conference on Robotics and Automation, 2006 ICRA 2006; 2006 May 15-19; Orlando, FL, USA. Piscataway: IEEE Press; 2006.
Kortman M, Ruhl S, Weise J, et al. Building block based iBoss approach: fully modular systems with standard interface to enhance future satellites. Jerusalem, Israel: RWTH Aachen University; 2015. Report No.: RWTH-2016-04239.
IBOSS – An intelligent modular system for on-orbit satellite servicing and assembly [internet]. FZI Research Center for Information Technology [cited 2020 Mar 11]. Available from: https://www.fzi.de/en/research/projekt-details/iboss/.
Underwood, 2015, Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST), Acta Astronaut, 114, 112, 10.1016/j.actaastro.2015.04.008
Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) [internet]. Caltech; 2015 [cited 2020 Jun 12]. Available from: http://www.pellegrino.caltech.edu/aarest1/.
Saunders, 2017, Building large telescopes in orbit using small satellites, Acta Astronaut, 141, 183, 10.1016/j.actaastro.2017.09.022
Eckersley S, Saunders C, Lobb D, et al. Future Rendezvous and Docking Missions enabled by low-cost but safety compliant Guidance Navigation and Control (GNC) architectures. Proceedings of The 15th Reinventing Space Conference; 2017 Oct 24-26; Glasgow, UK. British Interplanetary Society; 2017.
Jackson L, Saaj CM, Seddaoui A, et al. Design of a small space robot for on-orbit assembly missions. Proceedings of 2019 5th International Conference on Mechatronics and Robotics Engineering; 2019 Feb 16-19; Rome, Italy. New York: Assoc Computing Machinery; 2019.
Fukazu Y, Hara N, Kanamiya Y, et al. Reactionless resolved acceleration control with vibration suppression capability for JEMRMS/SFA. 2008 IEEE International Conference on Robotics and Biomimetics; 2009 Feb 22-25; Bangkok, Thailand. Piscataway: IEEE Press; 2009. p. 1359-64.
Sato N, Wakabayashi Y. JEMRMS design features and topics from testing. Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space: i-SAIRAS 2001; 2001 Jun 18-22; St-Hubert, Quebec, Canada. 2001.
Japanese experiment module remote manipulator system [internet]
Oda M, Kibe K, Yamagata F. ETS-VII, space robot in-orbit experiment satellite. Proceedings of IEEE international conference on robotics and automation; 1996 Apr 22-28; Minneapolis. Piscataway: IEEE Press; 2002.
Imaida, 2004, Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition, IEEE IEEE Trans on Robot Automa, 20, 499, 10.1109/TRA.2004.825271
Zheng F, Chen M, Li W, et al. Conceptual design of a new huge deployable antenna structure for space application. 2008 IEEE Aerospace Conference; 2008 Mar 1-8; Big Sky, MT, USA. Piscataway: IEEE Press; 2008. p. 1-7.
Meguro, 2009, In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII, Acta Astronaut, 65, 1306, 10.1016/j.actaastro.2009.03.052
Engineering Test Satellite VIII “KIKU No.8” (ETS-VIII) [internet]. JAXA; 2006-12 [cited 2020 Mar 14]. Available from: https://global.jaxa.jp/projects/sat/ets8/.
Sugawara, 2008, A satellite for demonstration of Panel Extension Satellite (PETSAT), Acta Astronaut, 63, 228, 10.1016/j.actaastro.2007.12.016
Nakasuka S, Nakamura Y. Panel extension satellite (PETSAT)—a novel satellite concept consisting of modular, functional and plug-in panels. 24th International Symposium on Space Technology and Science, invited talk; 2004.
Canadarm [internet]. 2020 [cited 2020 Jun 15]. Available from: https://en.wikipedia.org/wiki/Canadarm.
Mobile servicing system [internet]
Canada eyes deep space with next-generation robotic arm [internet]. Moskvitch K; 2013 [cited 2020 Jun 15]. Available from: https://www.space.com/22125-canada-new-robotic-space-arm.html.
Liu, 2014, An overview of the space robotics progress in China, System (ConeXpress ORS), 14, 15
China’s ‘heavenly palace’ nears earthly end [internet]. Xuan TJ; 2018 [cited 2020 Jun 14]. Available from: https://www.caixinglobal.com/2018-03-30/chinas-heavenly-palace-nears-earthly-end-101228893.html.
Chins’s manned space program [internet]. Beijing: CMS; 2011-04 [cited 2020 Mar 11]. Available from: http://en.cmse.gov.cn/col/col69/index.html.
Liu, 2015, Review of space manipulator technology, Manned Spaceflight, 21, 435
Huo X, Liu Y, Jiang L, et al. Inverse kinematic optimizations of 7R humanoid arms based on a joint parameterization. 2014 IEEE International Conference on Mechatronics and Automation; 2014 Aug 3-6; Tianjin, China. Piscataway: IEEE Press; 2014.
Sino-UK on-orbit assembly telescope project kicks off [internet]. Beijing: Chinese Academy of Sciences; 2017 [cited 2020 Jun 14]. Available from: http://english.cas.cn/newsroom/archive/news_archive/nu2017/201711/t20171107_185757.shtml.
Zhang Y, Xu W, Wang Z, et al. Dynamic modeling of self-reconfigurable multi-arm space robotic system with variable topology. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO); 2013 Dec 12-14; Shenzhen, China. Piscataway: IEEE Press; 2013. p. 599-604.
Tang, 2019, Research on motion characteristics of space truss-crawling robot, Int J Adv Robot Syst, 16, 10.1177/1729881418821578
Jiang, 2019, Design and preliminary ground experiment for robotic assembly of a modular space telescope, IEEE Access, 7, 160870, 10.1109/ACCESS.2019.2950666
Cheng, 2016, In-orbit assembly mission for the Space Solar Power Station, Acta Astronaut, 129, 299, 10.1016/j.actaastro.2016.08.019
Liu, 2020, Development of a novel end-effector for an on-orbit robotic refueling mission, IEEE Access, 8, 17762, 10.1109/ACCESS.2020.2964641
Zhang, 2020, Effective capture of nongraspable objects for space robots using geometric cage pairs, IEEE/ASME Trans Mechatron, 25, 95, 10.1109/TMECH.2019.2952552
Zhang, 2020, Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique, Nonlinear Dyn, 100, 2449, 10.1007/s11071-020-05615-5
Lu, 2020, Experimental investigation on automated assembly of space structure from cooperative modular components, Acta Astronaut, 171, 378, 10.1016/j.actaastro.2020.03.033
Zhu YY, Gao XH, Xie ZW, et al. Development of a gripper for Chinese space robot. Proceeding of the 2006 IEEE International Conference on Mechatronics and Automation; 2006 Jun 25-28; Henan, China. Piscataway: IEEE Press; 2006.
Zhang Q, Ni F, Zhu Y, et al. Compliant grasp strategy for three-fingered space robot end-effector. Robot 2011;33(4):427-33[Chinese].
Zhang T, Jiang L, Liu H. A grasping force control strategy for anthropomorphic prosthetic hand. Robot 2012;34(2):190-6[Chinese].
Guo, 2008, Hierarchical planning method for assembly sequences of large space truss structures, J Harbin Inst Technol, 40, 350
Hu, 2001
Fu, 2013, Construction of modular automatic test systems for small satellite TT&C, Spacecr Eng, 22, 104
Chen, 2020, Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target, Chinese J Aeronaut, 33, 1093, 10.1016/j.cja.2019.04.019
Betser J, Ewart R, Chandler F. Science and Technology (S&T) Roadmap Collaboration between SMC, NASA, and Government Partners. AIAA SPACE 2016; 2016 Sep 13-16; Long Beach, California. Reston: AIAA; 2016.
Nadir, 2005
Yang, 2019, Configuration synthesis of planar folded and common overconstrained spatial rectangular pyramid deployable truss units, Chinese J Aeronaut, 32, 1772, 10.1016/j.cja.2019.04.020
Houghton NM, Fulton J, Mazarr A, et al. Utilizing in-space assembly to add artificial gravity capabilities to Mars exploration mission vehicles. AIAA Scitech 2020 Forum; 2020 Jan 6-10; Orlando, FL. Reston: AIAA; 2020.
Daxini, 2017, Parametric shape optimization techniques based on Meshless methods: A review, Struct Multidiscip Optim, 56, 1197, 10.1007/s00158-017-1702-8
Garcia, 2004, Shape optimisation of continuum structures via evolution strategies and fixed grid finite element analysis, Struct Multidiscip Optim, 26, 92, 10.1007/s00158-003-0323-6
Levine M. Microdynamic behavior of a joint dominated structure on-orbit. 40th Structures, Structural Dynamics, and Materials Conference and Exhibit; 1999 April 12-15; St. Louis, MO, U.S.A. Reston: AIAA; 1999.
Stohlman, 2011
Lake M, Warren P, Peterson L. A revolute joint with linear load-displacement response for precision deployable structures. 37th Structure, Structural Dynamics and Materials Conference; 1996 Apr 15-17; Salt Lake City, UT. Reston: AIAA; 1996.
Rule, 1994, Welded joints for robotic, on-orbit assembly of space structures, J Aerosp Eng, 7, 209, 10.1061/(ASCE)0893-1321(1994)7:2(209)
Meyer, 2019, Reversible bonding of aromatic thermosetting copolyesters for in-space assembly, Macromol Mater Eng, 304, 10.1002/mame.201800647
Mukherjeea R, Sieglerb N, Thronsonc H. The future of space astronomy will be built: Results from the in-Space Astronomical Telescope (iSAT) assembly design study. 70th International Astronautical Congress (IAC); 2019 Oct 21-25; Washington D.C.: International Astronautical Federation (IAF); 2019.
Liu Y, Tian Z, Liu Y, et al. Cognitive modeling for robotic assembly/maintenance task in space exploration. In: Baldwin C, editor. International Conference on Applied Human Factors and Ergonomics; 2017 July 17-21; Los Angeles, USA. Cham: Springer; 2017. p. 143-53.
Hollander S. Autonomous space robotics-Enabling technologies for advanced space platforms. Space 2000 Conference and Exposition; 2000 Sept 19-21; Long Beach, California. Reston: AIAA; 2000.
Gao Q, Liu J, Ju Z. Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human–robot interaction. Expert Systems:e12490.
2020 NASA technology taxonomy [internet]. NASA; 2020 [cited 2020 Mar 10]. Available from: https://techport.nasa.gov/view/taxonomy.
Watch: Meet CIMON, the ‘flying brain’ who’s the first Artificial Intelligence robot to go to space [internet]. 2018 [cited 2020 Jun 16]. Available from: https://scroll.in/video/886106/watch-meet-cimon-the-flying-brain-whos-the-first-artificial-intelligence-robot-to-go-to-space.
Burns, 2019, Science on the lunar surface facilitated by low latency telerobotics from a Lunar Orbital Platform - Gateway, Acta Astronaut, 154, 195, 10.1016/j.actaastro.2018.04.031
Stelzer M, Steinmetz B, Birkenkampf P, et al. Software architecture and design of the Kontur-2 mission. 2017 IEEE Aerospace Conference; 2017 Mar 4-11; Big Sky, MT. Pisactaway: IEEE Press; 2017.
Weber B, Balachandran R, Riecke C, et al. Teleoperating robots from the international space station: microgravity effects on performance with force feedback. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 3-8 Nov. 2019; Macau, China. Piscataway: IEEE Press; 2019.
Review and prospects of orbit-to-surface teleoperation. Sci Sin Tech [internet]. Zhang L, Xiao G, Wang D, et al.; 2020 [cited 2020 Jun 16]. Available from: http://kns.cnki.net/kcms/detail/11.5844.TH.20200527.1712.004.html.
Lii N, Leidner D, Birkenkampf P, et al. Toward scalable intuitive telecommand of robots for space deployment with METERON SUPVIS Justin. The 14th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA); 2017 Jun; Leiden, Netherlands. 2017.
Schmaus, 2020, Knowledge driven orbit-to-ground teleoperation of a robot coworker, IEEE Rob Autom Lett, 5, 143, 10.1109/LRA.2019.2948128
Schiele A, Aiple M, Krueger T, et al. Haptics-1: Preliminary results from the first stiffness JND identification experiment in space. International Conference on Human Haptic Sensing and Touch Enabled Computer Applications; 2016 Jul 4-7; London, United Kingdom. Cham: Springer; 2016.
Xia T, Léonard S, Deguet A, et al. Augmented reality environment with virtual fixtures for robotic telemanipulation in space. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 7-12; Vilamoura, Portugal. Piscataway: IEEE Press; 2012.
Xia T, Léonard S, Kandaswamy I, et al. Model-based telerobotic control with virtual fixtures for satellite servicing tasks. 2013 IEEE International Conference on Robotics and Automation; 2013 May 6-10; Karlsruhe, Germany. Piscataway: IEEE Press; 2013.
Vozar S, Léonard S, Kazanzides P, et al. Experimental evaluation of force control for virtual-fixture-assisted teleoperation for on-orbit manipulation of satellite thermal blanket insulation. 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26-30; Seattle, WA. Piscataway: IEEE Press; 2015.
James TD, Carignan CR. Exoskeleton wrist design using composite visualization methods. ASME 2016 International Mechanical Engineering Congress and Exposition; 2016 Nov 11-17; Phoenix, Arizona, USA. ASME; 2017.
Liu, 2019, Haptic based teleoperation with master-slave motion mapping and haptic rendering for space exploration, Chin J Aeronaut, 32, 723, 10.1016/j.cja.2018.07.009
Hirzinger G, Heindl J, Landzettel K, et al. Multisensory shared autonomy - A key issue in the space robot technology experiment ROTEX. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems; 1992 Jul 7-10; Raleigh, NC, USA. Piscataway: IEEE Press; 2002.
Ni, 2019, Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm, Acta Astronaut, 163, 157, 10.1016/j.actaastro.2018.11.008
Ni, 2019, Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method, Chin J Aeronaut, 32, 513, 10.1016/j.cja.2018.05.005
Buckner C, Lampariello R. Tube-based model predictive control for the approach maneuver of a spacecraft to a free-tumbling target satellite. 2018 Annual American Control Conference (ACC); 2018 Jun 27-29; Milwaukee, WI. Piscataway: IEEE Press; 2018.
Okasha, 2015, Guidance and control for satellite in-orbit-self-assembly proximity operations, Aerospace Sci and Technol, 41, 289, 10.1016/j.ast.2014.11.011
Du, 2014, Attitude synchronization control for a group of flexible spacecraft, Automatica, 50, 646, 10.1016/j.automatica.2013.11.022
Hu H, Chen T, Wen H, et al. Autonomous assembly of a team of flexible spacecraft. Proceedings of the 9th European Nonlinear Dynamics Conference; 2017 Jun 25-30; Budapest, Hungary. Budapest: CongressLIne Ltd.; 2017.
Chen, 2017, On-orbit assembly of a team of flexible spacecraft using potential field based method, Acta Astronaut, 133, 221, 10.1016/j.actaastro.2017.01.021
Chen, 2018, Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer, Acta Astronaut, 147, 86, 10.1016/j.actaastro.2018.03.027
Chen, 2016, Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly, Acta Astronaut, 121, 271, 10.1016/j.actaastro.2015.11.004
Wei, 2020, Ground experiment on rendezvous and docking with a spinning target using multistage control strategy, Aerosp Sci Technol, 104, 10.1016/j.ast.2020.105967
Ding, 2019, The key mechanical problems of on-orbit construction, Sci Sin Mech Astron, 49
Wasfy, 2003, Computational strategies for flexible multibody systems, Appl Mech Rev, 56, 553, 10.1115/1.1590354
Jiang, 2010, Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures, Smart Mater Struct, 19, 10.1088/0964-1726/19/8/085020
Jiang, 2011, Decentralized robust vibration control of smart structures with parameter uncertainties, J of Intell Mater Syst and Struct, 22, 137, 10.1177/1045389X10391496
Xu, 2017, Decentralized adaptive fuzzy vibration control of smart gossamer space structure, J Intell Mater Syst Struct, 28, 1670, 10.1177/1045389X16679023
Hu, 2018, Decentralized simple adaptive control for large space structures, J Sound Vib, 427, 95, 10.1016/j.jsv.2018.04.033
D'Andrea, 2003, Distributed control design for spatially interconnected systems, IEEE Trans Automat Contr, 48, 1478, 10.1109/TAC.2003.816954
Ulutas, 2015, LMI-based distributed H∞ control of the thirty meter telescope’s primary mirror, Mechatronics, 28, 55, 10.1016/j.mechatronics.2015.04.003
Gottschlich, 1994, Assembly and task planning: A taxonomy, IEEE Robot Autom Mag, 1, 4, 10.1109/100.326723
Wang, 2005, A novel ant colony algorithm for assembly sequence planning, Int J Adv Manuf Technol, 25, 1137, 10.1007/s00170-003-1952-z
Bolger A, Faulkner M, Stein D, et al. Experiments in decentralized robot construction with tool delivery and assembly robots. Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2010 Oct 18-22; Taipei, Taiwan. Piscataway: IEEE; 2010.
Yun, 2010
Lindsey, 2013, Distributed construction of truss structures, 209
Mello, 1991, A correct and complete algorithm for the generation of mechanical assembly sequences, IEEE Trans Robot Autom, 7, 228, 10.1109/70.75905
Zha, 1999, Development of expert system for concurrent product design and planning for assembly, Int J Adv Manuf Technol, 15, 153, 10.1007/s001700050052
Bonneville, 1995, A genetic algorithm to generate and evaluate assembly plans, 1995
Wawerla J, Sukhatme GS, Mataric MJ. Collective construction with multiple robots. IEEE/RSJ international conference on intelligent robots and systems; 2002 Sept 30-Oct 4; Lausanne, Switzerland, Switzerland. Piscataway: IEEE Press; 2002. p. 2696-701.
Detweiler, 2007, Self-assembling mobile linkages, IEEE Robot Autom Mag, 14, 45, 10.1109/M-RA.2007.908971
Garattoni, 2018, Autonomous task sequencing in a robot swarm, Sci Robot, 3, 10.1126/scirobotics.aat0430
Werfel, 2014, Designing collective behavior in a termite-inspired robot construction team, Science, 343, 754, 10.1126/science.1245842
dos Santos SRB, Givigi SN, Nascimento CL. Autonomous construction of structures in a dynamic environment using reinforcement learning. 2013 IEEE International Systems Conference (SysCon); 2013 Apr 15-18; Orlando, FL, USA. Piscataway: IEEE Press; 2013. p. 452-9.
Rybus, 2018, Obstacle avoidance in space robotics: Review of major challenges and proposed solutions, Prog Aerosp Sci, 101, 31, 10.1016/j.paerosci.2018.07.001
Glosser GD, Newman WS. The implementation of a natural admittance controller on an industrial manipulator. Proceedings of the 1994 IEEE International Conference on Robotics and Automation; 1994 May 8-13; San Diego, CA, USA. Piscataway: IEEE Press; 2002.
Buckmaster DJ, Newman WS, Somes SD. Compliant motion control for robust robotic surface finishing. World Congress on Intelligent Control and Automation; 2008 Jun 25-27; Chongqing, China. Piscataway: IEEE Press; 2008. p. 559-64.
Kruse D, Wen JT. Application of the Smith-Åström Predictor to robot force control. International Conference on Automation Science and Engineering (CASE); 2015 Aug 24-28; Gothenburg, Sweden. IEEE; 2015. p. 383-8.
Zhang, 2018, Effective motion planning strategy for space robot capturing targets under consideration of the berth position, Acta Astronaut, 148, 403, 10.1016/j.actaastro.2018.04.029
She YC, Li S, Du B, et al. On-orbit assembly mission planning considering topological constraint and attitude disturbance. Acta Astronaut 2018;152:692-704.
Tong, 2019, Improved neural network 3D space obstacle avoidance algorithm for mobile robot, 105
Liu, 2020, Novel method of obstacle avoidance planning for redundant sliding manipulators, IEEE Access, 8, 78608, 10.1109/ACCESS.2020.2990555
Komendera, 2014
Komendera, 2015, Precise assembly of 3D truss structures using MLE-based error prediction and correction, Int J Rob Res, 34, 1622, 10.1177/0278364915596588
Gohlke M, Schuldt T, Doringshoff K, et al. Adhesive Bonding for Optical Metrology Systems in Space Applications. 10th International Lisa Symposium; 2014 May 18-23; Florida, USA. IOP Publishing Ltd; 2014. p. 012039.
Stroupe A, Huntsberger T, Kennedy B, et al. Heterogeneous robotic systems for assembly and servicing. Proceedings of the International Symposium on Artifical Intelligence, Robotics and Automation in Space; 2005 Sept 5-8; Munich, Germany. 2005.
Stroupe A, Huntsberger T, Okon A, et al. Precision manipulation with cooperative robots. In: Parker LE, Schneider FE, Schultz AC, editors. Multi-Robot Systems From Swarms to Intelligent Automata Volume III. Dordrecht: Springer; 2005. p. 235-48.
Rognant M, Cumer C, Biannic J-M, et al. Autonomous assembly of large structures in space: a technology review. 8th European Conference for Aeronautics and Aerospace Sciences(EUCASS); 2019; Madrid, Spain. ADD AUTHORS; 2019.
Zhang, 2019
Ueno H, Nishimaki T, Oda M, et al. Autonomous cooperative robots for space structure assembly and maintenance. Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS 2003; 2003 May 19-23; NARA, Japan. 2003.
Chen, 2018, Failure treatment strategy and fault-tolerant path planning of a space manipulator with free-swinging joint failure, Chin J Aeronaut, 31, 2290, 10.1016/j.cja.2018.04.008
Balan L, Bone GM. Real-time 3D collision avoidance method for safe human and robot coexistence. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006 Oct 9-15; Beijing, China. Piscataway: IEEE Press; 2006.
Flacco F, De Luca A. Multiple depth/presence sensors: Integration and optimal placement for human/robot coexistence. 2010 IEEE International Conference on Robotics and Automation; 2010 May 3-8; Anchorage, Alaska, USA. Piscataway: IEEE Press; 2010. p. 3916-23.
Flacco F, Kröger T, De Luca A, et al. A depth space approach to human-robot collision avoidance. Proceedings of IEEE International Conference on Robotics and Automation; 2012 May 14-18; RiverCentre, Saint Paul, Minnesota, USA. Piscataway: IEEE Press; 2012.
Najmaei N, Kermani MR. Prediction-based reactive control strategy for human-robot interactions. Proceedings of IEEE International Conference on Robotics and Automation; 2010 May 3-8; Alaska. Piscataway: IEEE Press; 2010.
Morato, 2014, Toward safe human robot collaboration by using multiple kinects based real-time human tracking, J Comput Inf Sci Eng, 14, 10.1115/1.4025810
Haddadin S, Albu-Schaffer A, De Luca A, et al. Collision detection and reaction: A contribution to safe physical human-robot interaction. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008 Sept 22-26; Acropolis Convention Center Nice, France. Piscataway: IEEE Press; 2008. p. 3356-63.
Shin, 2010, Design and control of a bio-inspired human-friendly robot, Int J Rob Res, 29, 571, 10.1177/0278364909353956
Cowley, 2019, Effects of variable gravity conditions on additive manufacture by fused filament fabrication using polylactic acid thermoplastic filament, Addit Manuf, 28, 814
3D printing in zero-g technology demonstration [internet]. NASA [cited 2020 Mar 20]. Available from: https://www.nasa.gov/mission_pages/station/research/experiments/1115.html.
3D printing offers multi-dimensional benefits to aviation [internet]. NASA; 2018 [cited 2020 Mar 20]. Available from: https://www.nasa.gov/aero/3D-printing-offers-multi-dimensional-benefits-to-aviation.
Cheung, 2012
Joyce ER, Fagin M, Shestople P, et al. Made in space archinaut: Key enabler for asteroid belt colonization. AIAA SPACE and Astronautics Forum and Exposition; 2017 Sept 12-14; Orlando, FL. Reston: AIAA; 2017.
Gao, 2017, Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm, Acta Astronaut, 138, 462, 10.1016/j.actaastro.2017.05.025
Gao, 2019, Dual-hand detection for human–robot interaction by a parallel network based on hand detection and body pose estimation, IEEE Trans Ind Electron, 66, 9663, 10.1109/TIE.2019.2898624
Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) [internet]. Washington: NASA; 2020 [cited 2020 1th April]. Available from: https://gameon.nasa.gov/projects/automated-reconfigurable-mission-adaptive-digital-assembly-systems-armadas/.
Costa A, Abdel-Rahman A, Jenett B, et al. Algorithmic approaches to reconfigurable assembly systems. 2019 IEEE Aerospace Conference; 2019 Mar 2-9; Big Sky, MT, USA. Piscataway: IEEE Press; 2019.
Collins TJ, Shen W-M. Integrated and adaptive locomotion and manipulation for self-reconfigurable robots. In: Gao Y, Fallah S, Jin Y, Lekakou C, editors. Annual Conference Towards Autonomous Robotic Systems; 2017 Jul 19-21; Guildford, United Kingdom. Cham: Springer; 2017. p. 150-65.