Review of functional titanium oxides. I: TiO2 and its modifications
Tài liệu tham khảo
Cava, 2002, Future directions in solid state chemistry: report of the NSF-sponsored workshop, Prog solid state Chem, 30, 1, 10.1016/S0079-6786(02)00010-9
Gázquez, 2014, A review of the production cycle of titanium dioxide pigment, Mater Sci Appl, 05, 441
Robichaud, 2009, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environ Sci Technol, 43, 4227, 10.1021/es8032549
Dransfield, 2000, Inorganic sunscreens, Radiat Prot Dosim, 91, 271, 10.1093/oxfordjournals.rpd.a033216
Serpone, 2007, Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products, Inorganica Chim Acta, 360, 794, 10.1016/j.ica.2005.12.057
Yamashita, 2003, Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catal Today, 84, 191, 10.1016/S0920-5861(03)00273-6
Bard, 1982, Design of semiconductor photoelectrochemical systems for solar energy conversion, J Phys Chem, 86, 172, 10.1021/j100391a008
Choi, 2004, Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy, Appl Spectrosc, 58, 598, 10.1366/000370204774103435
Xiaobo, 2009, Titanium dioxide nanomaterials and their energy applications, Chin J Catal, 30, 839, 10.1016/S1872-2067(08)60126-6
Şennik, 2010, Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor, Int J Hydrogen Energy, 35, 4420, 10.1016/j.ijhydene.2010.01.100
Jaroenworaluck, 2012, Nanocomposite TiO2–SiO2 gel for UV absorption, Chem Eng J, 181, 45, 10.1016/j.cej.2011.08.028
Mor, 2006, Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements, Thin Solid Films, 496, 42, 10.1016/j.tsf.2005.08.190
Mattesini, 2004, High-pressure and high-temperature synthesis of the cubic TiO2 polymorph, Phys Rev B, 70, 212101, 10.1103/PhysRevB.70.212101
Swamy, 2007, Ultrastiff cubic TiO2 identified via first-principles calculations, Phys Rev Lett, 98, 035502, 10.1103/PhysRevLett.98.035502
Koči, 2008, Mechanical stability of TiO2 polymorphs under pressure:ab initiocalculations, J Phys Condens Matter, 20, 345218, 10.1088/0953-8984/20/34/345218
Dewhurst, 1996, High-pressure structural phases of titanium dioxide, Phys Rev B, 54, R3673, 10.1103/PhysRevB.54.R3673
Liang, 2008, Mechanical properties and structural identifications of cubic TiO2, Phys Rev B, 77, 094126, 10.1103/PhysRevB.77.094126
Dubrovinskaia, 2001, Experimental and theoretical identification of a new high-pressure TiO2 polymorph, Phys Rev Lett, 87, 275501, 10.1103/PhysRevLett.87.275501
Nishio-Hamane, 2009, The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa, Phys Chem Miner, 37, 129, 10.1007/s00269-009-0316-0
Zhou, 2010, Unusual compression behavior of TiO2 polymorphs from first principles, Phys Rev B, 82, 060102, 10.1103/PhysRevB.82.060102
Sato, 1991, Baddeleyite-type high-pressure phase of TiO2, Science, 251, 786, 10.1126/science.251.4995.786
Muscat, 2002, First-principles calculations of the phase stability of TiO2, Phys Rev B, 65, 224112, 10.1103/PhysRevB.65.224112
Gerward, 1997, Post-rutile high-pressure phases in TiO2, J Appl Crystallogr, 30, 259, 10.1107/S0021889896011454
Shannon, 1965, Kinetics of the anatase-rutile transformation, J Am Ceram Soc, 48, 391, 10.1111/j.1151-2916.1965.tb14774.x
Lazzeri, 2001, Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys Rev B, 63, 155409, 10.1103/PhysRevB.63.155409
Marchand, 1980, TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17, Mater Res Bull, 15, 1129, 10.1016/0025-5408(80)90076-8
Banfield, 1991, The identification of naturally occurring TiO2 (B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares refinement, Am Mineral, 76, 343
Armstrong, 2004, TiO2-B nanowires, Angew Chem Int Ed, 43, 2286, 10.1002/anie.200353571
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, nature, 238, 37, 10.1038/238037a0
Ahmad, 2015, Hydrogen from photo-catalytic water splitting process: a review, Renew Sustain Energy Rev, 43, 599, 10.1016/j.rser.2014.10.101
Diebold, 2003, The surface science of Titanium Dioxide, Surf Sci Rep, 58, 53, 10.1016/S0167-5729(02)00100-0
Carp, 2004, Photoinduced reactivity of titanium dioxide, Prog solid state Chem, 32, 33, 10.1016/j.progsolidstchem.2004.08.001
Fujishima, 2008, TiO2 photocatalysis and related surface phenomena, Surf Sci Rep, 63, 515, 10.1016/j.surfrep.2008.10.001
Cassaignon, 2007, Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid, J Mater Sci, 42, 6689, 10.1007/s10853-007-1496-y
Li, 2005, High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry, J Am Chem Soc, 127, 8659, 10.1021/ja050517g
Mahshid, 2006, Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Semicond Phys Quantum Electron Optoelectron, 9, 65, 10.15407/spqeo9.02.065
Hulteen, 1997, A general template-based method for the preparation of nanomaterials, J Mater Chem, 7, 1075, 10.1039/a700027h
Huczko, 2000, Template-based synthesis of nanomaterials, Appl Phys Mater Sci Process, 70, 365, 10.1007/s003390051050
Kasuga, 1998, Formation of titanium oxide nanotube, Langmuir, 14, 3160, 10.1021/la9713816
Banfield, 1998, Thermodynamic analysis of phase stability of nanocrystalline titania, J Mater Chem, 8, 2073, 10.1039/a802619j
Ding, 1998, Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders, J Mater Res, 13, 2556, 10.1557/JMR.1998.0356
Ranade, 2002, Energetics of nanocrystalline TiO2, Proc Natl Acad Sci, 99, 6476, 10.1073/pnas.251534898
Ye, 1997, Thermoanalytical characteristic of nanocrystalline brookite-based titanium dioxide, Nanostructured Mater, 8, 919, 10.1016/S0965-9773(98)00013-0
Mehranpour, 2010, Study on the phase transformation kinetics of sol-gel drived TiO2 nanoparticles, J Nanomater, 2010, 31
Reyes-Coronado, 2008, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology, 19, 145605, 10.1088/0957-4484/19/14/145605
Ocana, 1992, Low-temperature nucleation of rutile observed by Raman Spectroscopy during crystallization of TiO2, J Am Ceram Soc, 75, 2010, 10.1111/j.1151-2916.1992.tb07237.x
Swamy, 2006, Size-dependent modifications of the Raman spectrum of rutile TiO2, Appl Phys Lett, 89, 3118, 10.1063/1.2364123
Wang, 2013, Size effect on thermal stability of nanocrystalline anatase TiO2, J Phys Appl Phys, 46, 255303, 10.1088/0022-3727/46/25/255303
Humin Cheng, 1995, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem Mater, 7, 663, 10.1021/cm00052a010
Tompsett, 1995, The Raman spectrum of brookite, TiO2 (PBCA, Z=8), J Raman Spectrosc, 26, 57, 10.1002/jrs.1250260110
Iliev, 2013, Raman and infrared spectra of brookite (TiO2): experiment and theory, Vib Spectrosc, 64, 148, 10.1016/j.vibspec.2012.08.003
Zhang, 2000, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J Phys Chem B, 104, 3481, 10.1021/jp000499j
Zhang, 2006, UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk, J Phys Chem B, 110, 927, 10.1021/jp0552473
Zhu, 2005, Size effect on phase transition sequence of TiO2 nanocrystal, Mater Sci Eng A, 403, 87, 10.1016/j.msea.2005.04.029
Landmann, 2012, The electronic structure and optical response of rutile, anatase and brookite TiO2, J Phys Condens Matter, 24, 195503, 10.1088/0953-8984/24/19/195503
Dylla, 2013, Lithium insertion in nanostructured TiO2 (B) architectures, Acc Chem Res, 46, 1104, 10.1021/ar300176y
Cromer, 1955, The structures of anatase and rutile, J Am Chem Soc, 77, 4708, 10.1021/ja01623a004
Tracy L, 2006, Surface science studies of the photoactivation of TiO2-new photochemical processes, Chem Rev, 106, 4428, 10.1021/cr050172k
Thompson, 2005, TiO2-based photocatalysis: surface defects, oxygen and charge transfer, Top Catal, 35, 197, 10.1007/s11244-005-3825-1
Diebold, 2003, Structure and properties of TiO2 surfaces: a brief review, Appl Phys Mater Sci Process, 76, 681, 10.1007/s00339-002-2004-5
Charlton, 1997, Relaxation of TiO2(110)-(1×1) using surface X-ray diffraction, Phys Rev Lett, 78, 495, 10.1103/PhysRevLett.78.495
Ramamoorthy, 1994, First-principles calculations of the energetics of stoichiometric TiO2 surfaces, Phys Review-Section Condens Matter, 49, 16721, 10.1103/PhysRevB.49.16721
Gong, 2007, First-principles study of the structures and energetics of stoichiometric brookite TiO2 surfaces, Phys Rev B, 76, 235307, 10.1103/PhysRevB.76.235307
Kobayashi, 2013, Synthesis of titanium dioxide nanocrystals with controlled crystal-and micro-structures from titanium complexes, Nanomater Nanotechnol, 3, 1, 10.5772/57533
Vittadini, 2010, Hydroxylation of TiO2-B: insights from density functional calculations, J Mater Chem, 20, 5871, 10.1039/c0jm00422g
Mitsuhashi, 1979, Transformation enthalpies of the TiO2 polymorphs, J Am Ceram Soc, 62, 356, 10.1111/j.1151-2916.1979.tb19077.x
Navrotsky, 1967, Enthalpy of the anatase-rutile transformation, J Am Ceram Soc, 50, 10.1111/j.1151-2916.1967.tb15013.x
Satoh, 2013, Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania, Sci Rep, 3, 1959, 10.1038/srep01959
Göpel, 1984, Surface defects of TiO2(110): a combined XPS, XAES and ELS study, Surf Sci, 139, 333, 10.1016/0039-6028(84)90054-2
Hüfner, 1973, X-ray photoelectron band structure of some transition-metal compounds, Phys Rev B, 8, 4857, 10.1103/PhysRevB.8.4857
Finkelstein, 1999, Band approach to the excitation-energy dependence of x-ray fluorescence of TiO2, Phys Rev B, 60, 2212, 10.1103/PhysRevB.60.2212
Woicik, 2002, Hybridization and bond-orbital components in site-specific X-ray photoelectron spectra of rutile TiO2, Phys Rev Lett, 89, 077401, 10.1103/PhysRevLett.89.077401
De Groot, 1993, Oxygen 1s X-ray absorption of tetravalent titanium oxides: a comparison with single-particle calculations, Phys Rev B, 48, 2074, 10.1103/PhysRevB.48.2074
Thomas, 2007, Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy, Phys Rev B, 75, 035105, 10.1103/PhysRevB.75.035105
Brydson, 1992, Electron energy-loss near-edge structures at the oxygen K edges of titanium (IV) oxygen compounds, J Phys Condens Matter, 4, 3429, 10.1088/0953-8984/4/13/007
Weibel, 2006, Electrical properties and defect chemistry of anatase (TiO2), Solid State Ion, 177, 229, 10.1016/j.ssi.2005.11.002
Goringe, 1997, Tight-binding modelling of materials, Rep Prog Phys, 60, 1447, 10.1088/0034-4885/60/12/001
Daude, 1977, Electronic band structure of titanium dioxide, Phys Rev B, 15, 3229, 10.1103/PhysRevB.15.3229
Poumellec, 1991, Electronic-structure and X-ray absorption-spectrum of rutile TiO2, J Physics-Condensed Matter, 3, 8195, 10.1088/0953-8984/3/42/014
Glassford, 1992, Structural and electronic properties of titanium dioxide, Phys Rev B, 46, 1284, 10.1103/PhysRevB.46.1284
Hagfeldt, 1992, Semiempirical calculations of TiO2 (rutile) clusters, Int J Quantum Chem, 44, 477, 10.1002/qua.560440408
Lin, 1993, Electronic structure of rutile (TiO2), J Phys Chem Solids, 54, 907, 10.1016/0022-3697(93)90217-F
Mo, 1995, Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite, Phys Rev B, 51, 13023, 10.1103/PhysRevB.51.13023
Fahmi, 1993, Theoretical analysis of the structures of titanium dioxide crystals, Phys Rev B, 47, 11717, 10.1103/PhysRevB.47.11717
Hafner, 2008, Ab-initio simulations of materials using VASP: density-functional theory and beyond, J Comput Chem, 29, 2044, 10.1002/jcc.21057
Vogtenhuber, 1994, Electronic structure and relaxed geometry of the TiO2 rutile (110) surface, Phys Rev B, 49, 2099, 10.1103/PhysRevB.49.2099
Janotti, 2010, Hybrid functional studies of the oxygen vacancy in TiO2, Phys Rev B, 81, 085212, 10.1103/PhysRevB.81.085212
Perdew, 1981, Self-interaction correction to density-functional approximations for many-electron systems, Phys Rev B, 23, 5048, 10.1103/PhysRevB.23.5048
Morgan, 2007, A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface, Surf Sci, 601, 5034, 10.1016/j.susc.2007.08.025
Hedin, 1965, New method for calculating the one-particle Green's Function with application to the electron-gas problem, Phys Rev, 139, 796, 10.1103/PhysRev.139.A796
Lee, 2011, Photocatalytic properties of nanotubular-shaped TiO2 powders with anatase phase obtained from titanate nanotube powder through various thermal treatments, Int J Photoenergy, 2011, 1, 10.1155/2011/327821
Nolan, 2011, Hybrid density functional theory description of N- and C-doping of NiO, J Chem Phys, 134, 224703
Lee, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B, 37, 785, 10.1103/PhysRevB.37.785
Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J Chem Phys, 98, 5648
Perdew, 1996, Rationale for mixing exact exchange with density functional approximations, J Chem Phys, 105, 9982
Adamo, 1999, Toward reliable density functional methods without adjustable parameters: the PBE0 model, J Chem Phys, 110, 6158
Heyd, 2003, Hybrid functionals based on a screened Coulomb potential, J Chem Phys, 118, 8207
Heyd, 2004, Assessment and validation of a screened Coulomb hybrid density functional, J Chem Phys, 120, 7274, 10.1063/1.1668634
Muscat, 2001, On the prediction of band gaps from hybrid functional theory, Chem Phys Lett, 342, 397, 10.1016/S0009-2614(01)00616-9
Heyd, 2004, Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, J Chem Phys, 121, 1187
de PR Moreira, 2002, Effect of Fock exchange on the electronic structure and magnetic coupling in NiO, Phys Rev B, 65, 155102, 10.1103/PhysRevB.65.155102
Heyd, 2005, Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, J Chem Phys, 123, 174101
Peralta, 2006, Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, Phys Rev B, 74, 073101, 10.1103/PhysRevB.74.073101
Yong-fan Zhang, 2005, A theoretical study on the electronic structures of TiO2: effect of Hartree-Fock exchange, J Phys Chem B, 109, 19270, 10.1021/jp0523625
Scanlon, 2013, Band alignment of rutile and anatase TiO2, Nat Mater, 12, 798, 10.1038/nmat3697
Labat, 2007, Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals, J Chem Phys, 126, 154703
Islam, 2007, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles, Phys Rev B, 76, 045217, 10.1103/PhysRevB.76.045217
Asahi, 2000, Electronic and optical properties of anatase TiO2, Phys Rev B, 61, 7459, 10.1103/PhysRevB.61.7459
Ekuma, 2011, Ab-initio electronic and structural properties of rutile titanium dioxide, Jpn J Appl Phys, 50, 101103, 10.1143/JJAP.50.101103
Magyari-Köpe, 2012, First principles calculations of oxygen vacancy-ordering effects in resistance change memory materials incorporating binary transition metal oxides, J Mater Sci, 47, 7498, 10.1007/s10853-012-6638-1
Ekuma, 2011, Ab-initio local density approximation description of the electronic properties of zinc blende cadmium sulfide (zb-CdS), Phys B Condens Matter, 406, 1477, 10.1016/j.physb.2011.01.051
Harmon, 1982, Total-energy calculations for Si with a first-principles linear-combination-of-atomic-orbitals method, Phys Rev B, 25, 1109, 10.1103/PhysRevB.25.1109
Moussa, 2012, Analysis of the Heyd-Scuseria-Ernzerhof density functional parameter space, J Chem Phys, 136, 204117
Hummer, 2009, Heyd-Scuseria-Ernzerh of hybrid functional for calculating the lattice dynamics of semiconductors, Phys Rev B, 80, 115205, 10.1103/PhysRevB.80.115205
Vydrov, 2006, Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals, J Chem Phys, 125, 074106
Wang, 2003, Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces: a first principles study, Surf Sci, 542, 72, 10.1016/S0039-6028(03)00925-7
Yun Wang, 2013, Engineering the band gap of bare titanium dioxide materials for visible-light activity: a theoretical prediction, RSC Adv, 3, 8777, 10.1039/c3ra40239h
Nowotny, 2006, Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity, J Phys Chem B, 110, 16270, 10.1021/jp0606210
Shishkin, 2007, Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections, Phys Rev Lett, 99, 246403, 10.1103/PhysRevLett.99.246403
Shishkin, 2007, Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections, Phys Rev Lett, 99, 246403, 10.1103/PhysRevLett.99.246403
Fuchs, 2007, Quasiparticle band structure based on a generalized Kohn-Sham scheme, Phys Rev B, 76, 115109, 10.1103/PhysRevB.76.115109
Shishkin, 2007, Self-consistent GW calculations for semiconductors and insulators, Phys Rev B, 75, 10.1103/PhysRevB.75.235102
Ganduglia-Pirovano, 2007, Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges, Surf Sci Rep, 62, 219, 10.1016/j.surfrep.2007.03.002
Finazzi, 2008, Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations, J Chem Phys, 129, 154113
Bumajdad, 2014, Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation, Phys Chem Chem Phys, 16, 7146, 10.1039/c3cp54411g
Papp, 1993, Titanium (IV) oxide photocatalysts with palladium, Chem Mater, 5, 284, 10.1021/cm00027a009
Adachi, 1994, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Sol Energy, 53, 187, 10.1016/0038-092X(94)90480-4
Wu, 2004, Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution, Int J Hydrogen Energy, 29, 1601, 10.1016/j.ijhydene.2004.02.013
Waterhouse, 2013, Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2, Sci Rep, 3, 2849, 10.1038/srep02849
Nada, 2005, Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts, Int J Hydrogen Energy, 30, 687, 10.1016/j.ijhydene.2004.06.007
Matthey, 2007, Enhanced bonding of gold nanoparticles on oxidized TiO2(110), Science, 315, 1692, 10.1126/science.1135752
Sakthivel, 2004, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res, 38, 3001, 10.1016/j.watres.2004.04.046
Tsydenov, 2012, Toward the design of asymmetric photocatalytic membranes for hydrogen production: preparation of TiO2-based membranes and their properties, Int J Hydrogen Energy, 37, 11046, 10.1016/j.ijhydene.2012.04.054
Liu, 2004, A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide, Catal Today, 93, 877, 10.1016/j.cattod.2004.06.097
Karakitsou, 1993, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, J Phys Chem, 97, 1184, 10.1021/j100108a014
Zaleska, 2008, Doped-TiO2: a review, Recent Pat Eng, 2, 157, 10.2174/187221208786306289
Kuznetsov, 2009, On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments, J Phys Chem C, 113, 15110, 10.1021/jp901034t
Choi, 2009, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2, J Phys Chem C, 114, 783, 10.1021/jp908088x
Daghrir, 2013, Modified TiO2 for environmental photocatalytic applications: a review, Ind Eng Chem Res, 52, 3581, 10.1021/ie303468t
Banerjee, 2011, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures, Nanotechnol Sci Appl, 4, 35, 10.2147/NSA.S9040
Wonyong Choi, 1994, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J Phys Chem, 98, 13669, 10.1021/j100102a038
Jina Choi, 2010, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2, J Phys Chem C, 114, 783, 10.1021/jp908088x
Kubacka, 2011, Advanced nanoarchitectures for solar photocatalytic applications, Chem Rev, 112, 1555, 10.1021/cr100454n
Janotti, 2011, LDA + U and hybrid functional calculations for defects in ZnO, SnO2, and TiO2, Phys Status Solidi (b), 248, 799, 10.1002/pssb.201046384
Di Valentin, 2009, Reduced and n-type doped TiO2: nature of Ti3+ species, J Phys Chem C, 113, 20543, 10.1021/jp9061797
Finazzi, 2009, Nature of Ti interstitials in reduced bulk anatase and rutile TiO2, J Phys Chem C, 113, 3382, 10.1021/jp8111793
Anpo, 2003, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J Catal, 216, 505, 10.1016/S0021-9517(02)00104-5
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Serpone, 2006, Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts?, J Phys Chem B, 110, 24287, 10.1021/jp065659r
Di Valentin, 2004, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys Rev B, 70, 085116, 10.1103/PhysRevB.70.085116
Di Valentin, 2007, N-doped TiO2: theory and experiment, Chem Phys, 339, 44, 10.1016/j.chemphys.2007.07.020
Di Valentin, 2005, Theory of carbon doping of titanium dioxide, Chem Mater, 17, 6656, 10.1021/cm051921h
Chen, 2011, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746, 10.1126/science.1200448
Qiu, 2014, Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries, J Phys Chem C, 118, 8824, 10.1021/jp501819p
Yamashita, 2003, Application of ion beams for preparation of TiO2 thin film photocatalysts operatable under visible light irradiation: ion-assisted deposition and metal ion-implantation, Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms, 206, 889, 10.1016/S0168-583X(03)00891-7
Yamashita, 2001, Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method, J Synchrotron Radiat, 8, 569, 10.1107/S090904950001712X
Turci, 2013, Crystalline phase modulates the potency of nanometric TiO2 to adhere to and perturb the stratum corneum of porcine skin under indoor light, Chem Res Toxicol, 26, 1579, 10.1021/tx400285j
Popov, 2005, TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens, J Phys D Appl Phys, 38, 2564, 10.1088/0022-3727/38/15/006
Contado, 2008, TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis, Anal Chem, 80, 7594, 10.1021/ac8012626
Chang, 2013, Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies, Nanoscale Res Lett, 8, 1, 10.1186/1556-276X-8-51
Zhang, 1998, Role of particle size in nanocrystalline TiO2-based photocatalysts, J Phys Chem B, 102, 10871, 10.1021/jp982948+
Kandiel, 2013, Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities, Photochem Photobiol Sci, 12, 602, 10.1039/C2PP25217A
Kandiel, 2010, Tailored titanium dioxide nanomaterials: anatase nanoparticles and Brookite nanorods as highly active photocatalysts, Chem Mater, 22, 2050, 10.1021/cm903472p
Yang, 2009, An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals, J Am Chem Soc, 131, 17885, 10.1021/ja906774k
Fujishima, 2006, Titanium dioxide photocatalysis: present situation and future approaches, Comptes Rendus Chim, 9, 750, 10.1016/j.crci.2005.02.055
Hashimoto, 2005, TiO2 photocatalysis: a historical overview and future prospects, Jpn J Appl Phys, 44, 8269, 10.1143/JJAP.44.8269
Navarro Yerga, 2009, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem, 2, 471, 10.1002/cssc.200900018
Abe, 2010, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J Photochem Photobiol C Photochem Rev, 11, 179, 10.1016/j.jphotochemrev.2011.02.003
Ni, 2007, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew Sustain Energy Rev, 11, 401, 10.1016/j.rser.2005.01.009
Vračar, 2006, Electrocatalysis by nanoparticles–oxygen reduction on Ebonex/Pt electrode, J Electroanal Chem, 587, 99, 10.1016/j.jelechem.2005.10.021
Zhang, 2015, Hydroxylation of the rutile TiO2 (110) surface enhancing its reducing power for photocatalysis, J Phys Chem C, 119, 1451, 10.1021/jp510427v
Seferlis, 2015, The in situ electrochemical stable promotion of photoelectrocatalytic activity of TiO2 by pulsed reductive doping: application in photoelectrochemical water splitting, J Electrochem Soc, 162, H397, 10.1149/2.0781506jes
Tiido, 2013, Graphene–TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction, Electrochimica Acta, 107, 509, 10.1016/j.electacta.2013.05.155
Cho, 2015, Dual-functional photocatalysis using a ternary hybrid of TiO2 modified with graphene oxide along with Pt and fluoride for H2-producing water treatment, J Catal, 330, 387, 10.1016/j.jcat.2015.07.007