Review of fully coherent free-electron lasers

Nuclear Science and Techniques - Tập 29 Số 11 - 2018
Chao Feng1, Haixiao Deng1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). https://doi.org/10.1038/nphoton.2010.176

T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics 6, 540 (2012). https://doi.org/10.1038/nphoton.2012.141

H.S. Kang, C.K. Min, H. Heo et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708 (2017). https://doi.org/10.1038/s41566-017-0029-8

C. Milne, T. Schietinger, M. Aiba, SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017). https://doi.org/10.3390/app7070720

M. Altarelli, R. Brinkmann, M. Chergui et al., The European X-Ray Free-electron Laser, Technical Design Report, DESY (2007)

J. N. Galayda, The linac coherent light source-II project, in Proceedings of IPAC’14, Dresden, Germany, p. 935 (2014)

Z. Zhu, Z. Zhao, D. Wang, et al., SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai, in Proceedings of FEL2017, Santa Fe, NM, USA, p. 182 (2017). https://doi.org/10.18429/JACoW-FEL2017-MOP055

E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Terawatt-scale sub-10-fs laser technology- key to generation of GW-level attosecond pulses in X-ray free electron laser. Opt. Commun. 237, 153 (2004). https://doi.org/10.1016/j.optcom.2004.03.070

A.A. Zholents, M.S. Zolotorev, Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction. New J. Phys. 10, 025005 (2008). https://doi.org/10.1088/1367-2630/10/2/025005

J. Qiang, J. Wu, Generation of multi-color attosecond X-ray radiation through modulation compression. Appl. Phys. Lett. 99, 081101 (2011). https://doi.org/10.1063/1.3629769

E. Prat, S. Reiche, Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses. Phys. Rev. Lett. 114, 244801 (2015). https://doi.org/10.1103/PhysRevLett.114.244801

J.B. Rosenzweig, D. Alesini, G. Andonian, Generation of ultra-short, high brightness electron beams for single-spike SASE FEL operation. Nucl. Instrum. Methods A 593, 39 (2008). https://doi.org/10.1016/j.nima.2008.04.083

S. Huang, Y. Ding, Y. Feng, Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017). https://doi.org/10.1103/PhysRevLett.119.154801

A.S. Hernandez, E. Prat, S. Bettoni, Generation of large-bandwidth x-ray free-electron-laser pulses. Phys. Rev. Lett. 19, 090702 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.090702

I. Zagorodnov, G. Feng, T. Limberg, Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL. Nucl. Instrum. Methods 837, 69–79 (2016). https://doi.org/10.1016/j.nima.2016.09.001

S. Serkez, V. Kocharyan, E. Saldin, et al., Report No. DESY 13-109. Deutsches Elektronen-Synchrotron, Hamburg, Germany (2013)

E. Prat, M. Calvi, S. Reiche, Generation of ultra-large-bandwidth X-ray free-electron-laser pulses with a transverse-gradient undulator. J. Synchrotron Radiat. 23, 874–879 (2016). https://doi.org/10.1107/S1600577516007177

M. Song, J. Yan, K. Li, C. Feng et al., Bandwidth broadening of X-ray free electron laser pulses with the natural gradient of planar undulator. Nucl. Instrum. Methods 884, 11–17 (2018). https://doi.org/10.1016/j.nima.2017.12.005

R. Neutze, R. Wouts, D. van der Spoel et al., Potential for biomolecular imaging with femtosecond X-ray pulses. Nature (London) 406, 752 (2000). https://doi.org/10.1038/35021099

M. Fuchs, M. Trigo, J. Chen, Anomalous nonlinear X-ray compton scattering. Nat. Phys. 11, 964 (2015). https://doi.org/10.1038/nphys3452

N.M. Kroll, P.L. Morton, M. Rosenbluth, Free-electron lasers with variable parameter wigglers. IEEE J. Quantum Electron. 17, 1436 (1981). https://doi.org/10.1109/JQE.1981.1071285

W.M. Fawley, Z. Huang, K.J. Kim, Tapered undulators for SASE FELs. Nucl. Instrum. Methods A 483, 537–541 (2002). https://doi.org/10.1016/S0168-9002(02)00377-7

W.M. Fawley, J. Frisch, Z. Huang, et al., Toward TW-level, hard X-ray pulses at LCLS, in Proceedings of FEL2011, Shanghai, China, pp. 160–163 (2011)

Y. Jiao, Y. Cai, A.W. Chao et al., Modeling and multi-dimensional optimization of a tapered free electron laser. Phys. Rev. ST Accel. Beams 15, 050704 (2012). https://doi.org/10.1103/PhysRevSTAB.15.050704

N. Sudar, P. Musumeci, J. Duris, High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator. Phys. Rev. Lett. 117, 174801 (2016). https://doi.org/10.1103/PhysRevLett.117.174801

J. Faure, Y. Glinec, A. Pukhov et al., A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004). https://doi.org/10.1038/nature02963

V.N. Litvinenko, B. Burnham, M. Emamian, Gamma-ray production in a storage ring free-electron laser. Phys. Rev. Lett 78, 4569 (1997). https://doi.org/10.1103/PhysRevLett.78.4569

N.B. Aetukuri, A.X. Gray, M. Drouard et al., Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9, 661 (2013). https://doi.org/10.1038/nphys2733

C. von Korff Schmising, B. Pfau, M. Schneider, Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett 112, 217203 (2014). https://doi.org/10.1103/PhysRevLett.112.217203

K.J. Kim, Circular polarization with crossed-planar undulators in high-gain FELs. Nucl. Instrum. Methods A 445, 329–332 (2000). https://doi.org/10.1016/S0168-9002(00)00137-6

H. Deng, T. Zhang, L. Feng, Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser. Phys. Rev. ST Accel. Beams 17, 020704 (2014). https://doi.org/10.1103/PhysRevSTAB.17.020704

E. Ferrari, E. Allaria, J. Buck, Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators. Sci. Rep. 5, 13531 (2015). https://doi.org/10.1038/srep13531

E. Allaria, B. Diviacco, C. Callegari et al., Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 41040 (2014). https://doi.org/10.1103/PhysRevX.4.041040

A.A. Lutman, J.P. Macarthur, M. Ilchen et al., Polarization control in an X-ray free-electron laser. Nat. Photonics 10, 468–472 (2016). https://doi.org/10.1038/nphoton.2016.79

J.M.J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906 (1971). https://doi.org/10.1063/1.1660466

D. Deacon, L. Elias, J. Madey, First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977). https://doi.org/10.1103/PhysRevLett.38.892

D. Oepts, A.F.G. Van der Meer, P.W. Van Amersfoort, The free-electron-laser user facility FELIX. Infrared Phys. Techn. 36, 297–308 (1995). https://doi.org/10.1016/1350-4495(94)00074-U

A.M. Kondratenko, E.L. Saldin, Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980)

R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984). https://doi.org/10.1016/0030-4018(84)90105-6

B.D. Patterson, R. Abela, Novel opportunities for time-resolved absorption spectroscopy at the X-ray free electron laser. Phys. Chem. Chem. Phys. 12, 5647–5652 (2010). https://doi.org/10.1039/C003406A

J.B. Murphy, C. Pellegrini, Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region. J. Opt. Soc. Am. B 2, 259 (1985). https://doi.org/10.1364/JOSAB.2.000259

M.J. Hogan, C. Pellegrini, J. Rosenzweig, Measurements of high gain and intensity fluctuations in a self-amplified, spontaneous-emission free-electron laser. Phys. Rev. Lett. 80, 289 (1998). https://doi.org/10.1103/PhysRevLett.80.289

W. Ackermann, G. Asova, V. Ayvazyan et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007). https://doi.org/10.1038/nphoton.2007.76

C. Bostedt, S. Boutet, D.M. Fritz, Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016). https://doi.org/10.1103/RevModPhys.88.015007

J. Feldhaus, E.L. Saldin, Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 140, 341 (1997). https://doi.org/10.1016/S0030-4018(97)00163-6

G. Geloni, V. Kocharyan, E. Saldin, A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 1391 (2011). https://doi.org/10.1080/09500340.2011.586473

C. Feng, Theoretical and Experimental Studies on Novel High-Gain Seeded Free-Electron Laser Schemes (Springer, Berlin, 2016)

D. Ratner, R. Abela, J. Amann, Experimental demonstration of a soft X-ray self-seeded free-electron laser. Phys. Rev. Lett. 114, 054801 (2015). https://doi.org/10.1103/PhysRevLett.114.054801

J. Amann, W. Berg, V. Blank et al., Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 6, 693 (2012). https://doi.org/10.1038/nphoton.2012.180

K. Zhang, Z. Qi, C. Feng, Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique. Nucl. Instrum. Methods A 854, 3–10 (2017). https://doi.org/10.1016/j.nima.2017.02.039

K. Zhang, L. Zeng, Z. Qi, Eliminating the microbunching-instability-induced sideband in a soft X-ray self-seeding free-electron laser. Nucl. Instrum. Methods A 882, 22–29 (2017). https://doi.org/10.1016/j.nima.2017.10.060

H. Zhang, K. Li, J. Yan, Atomic inner-shell radiation seeded free-electron lasers. Phys. Rev. ST Accel. Beams 21, 070701 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.070701

B.W.J. McNeil, N.R. Thompson, D.J. Dunning, Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 110, 134802 (2013). https://doi.org/10.1103/PhysRevLett.110.134802

J. Wu, F.-J. Decker, Y. Feng, et. al. X-ray Spectra and Peak Power Control with iSASE, in Proceedings of IPAC13 (Shanghai, China), p. 2068 (2013)

D. Xiang, Y. Ding, Z. Huang et al., Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering. Phys. Rev. ST Accel. Beams 16, 010703 (2013). https://doi.org/10.1103/PhysRevSTAB.16.010703

E.A. Schneidmiller, M.V. Yurkov, Harmonic lasing in X-ray free electron lasers. Phys. Rev. ST Accel. Beams 15, 080702 (2012). https://doi.org/10.1103/PhysRevSTAB.15.080702

E.A. Schneidmiller, B. Faatz, M. Kuhlmann, First operation of a harmonic lasing self-seeded free electron laser. Phys. Rev. ST Accel. Beams 20, 020705 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.020705

G. Lambert, T. Hara, D. Garzella et al., Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat. Phys. 4, 296 (2008). https://doi.org/10.1038/nphys889

T. Togashi, K. Fukami, S. Matsubara, et al., First Observation of the 61.5 nm Seeded FEL at the SCSS Test Accelerator, in Proceedings of the 2010 FEL Conference, Malmoö, Sweden (2010)

S. Ackermann, A. Azima, J. Bödewadt, et al., sFLASH - Present Status and Commissioning Results, in Proceedings of IPAC2011, San Sebastián, Spain, pp. 923–927 (2011)

L.H. Yu, Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178 (1991). https://doi.org/10.1103/PhysRevA.44.5178

L.H. Yu, M. Babzien, I. Ben-Zvil et al., High-gain harmonic-generation free-electron laser. Science 289, 932 (2000). https://doi.org/10.1126/science.289.5481.932

L.-H. Yu, I. Ben-Zvi, High-gain harmonic generation of soft X-rays with the “fresh bunch” technique. Nucl. Instrum. Methods A 393, 96–99 (1997). https://doi.org/10.1016/S0168-9002(97)00435-X

J. Wu, L.H. Yu, Coherent hard X-ray production by cascading stages of high gain harmonic generation. Nucl. Instrum. Methods A 475, 104–111 (2001). https://doi.org/10.1016/S0168-9002(01)01552-2

E. Allaria, D. Castronovo, P. Cinquegrana et al., Two-stage seeded soft-X-ray free-electron laser. Nat. Photonics 7, 913–918 (2013). https://doi.org/10.1038/nphoton.2013.277

Z. Zhao, D. Wang, Q. Gu, SXFEL: a soft X-ray fee electron laser in China. Synchrotron Radiat News 30, 29–33 (2017). https://doi.org/10.1080/08940886.2017.1386997

G. Stupakov, Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009). https://doi.org/10.1103/PhysRevLett.102.074801

D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. ST Accel. Beams 12, 030702 (2009). https://doi.org/10.1103/PhysRevSTAB.12.030702

D. Xiang, E. Colby, M. Dunning, Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys. Rev. Lett. 105, 114801 (2010). https://doi.org/10.1103/PhysRevLett.105.114801

D. Xiang, E. Colby, M. Dunning, Evidence of high harmonics from echo-enabled harmonic generation for seeding X-ray free electron lasers. Phys. Rev. Lett. 108, 024802 (2012). https://doi.org/10.1103/PhysRevLett.108.024802

Z. Zhao, D. Wang, J. Chen et al., First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics 6, 360–363 (2012). https://doi.org/10.1038/nphoton.2012.105

E. Hemsing, M. Dunning, B. Garcia et al., Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nat. Photonics 10, 512–515 (2016). https://doi.org/10.1038/nphoton.2016.101

C. Feng, D. Huang, H. Deng et al., A single stage EEHG at SXFEL for narrow-bandwidth soft X-ray generation. Sci. Bull. 61, 1202 (2016). https://doi.org/10.1007/s1143

C. Feng, Z.T. Zhao, Hard X-ray free-electron laser based on echo-enabled staged harmonic generation scheme. Chin. Sci. Bull. 55, 221–227 (2010). https://doi.org/10.1007/s11434-010-0002-0

Z. Zhao, C. Feng, J. Chen et al., Two-beam based two-stage EEHG-FEL for coherent hard X-ray generation. Sci. Bull. 61, 720–727 (2016). https://doi.org/10.1007/s11434-016-1060-8

Z. Zhao, C. Feng, K.Q. Zhang, Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). https://doi.org/10.1007/s41365-017-0258-z

H. Deng, C. Feng, Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys. Rev. Lett. 111, 084801 (2013). https://doi.org/10.1103/PhysRevLett.111.084801

C. Feng, H. Deng, D. Wang, Phase-merging enhanced harmonic generation free-electron laser. New J. Phys. 16, 043021 (2014). https://doi.org/10.1088/1367-2630/16/4/043021

C. Feng, T. Zhang, H. Deng, Three-dimensional manipulation of electron beam phase space for seeding soft X-ray free-electron lasers. Phys. Rev. ST Accel. Beams 17, 070701 (2014). https://doi.org/10.1103/PhysRevSTAB.17.070701

W. Liu, Y. Jiao, IPAC 2018, TUPMF051 (Vancouver, BC, Canada, 2018)

Q. Jia, H. Li, Normal planar undulators doubling as transverse gradient undulators. Phys. Rev. ST Accel. Beams 20, 020707 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.020707

Z. Zhao, H. Li, Q. Jia, Phase-merging enhanced harmonic generation free-electron laser with a normal modulator. J. Synchrotron Radiat. 24, 906–911 (2017). https://doi.org/10.1107/S1600577517008402

Z. Qi, C. Feng, H. Deng, Parameter optimization and start-to-end simulation for the phase-merging enhanced harmonic generation free electron laser. Nucl. Instrum. Methods A 875, 119–124 (2017). https://doi.org/10.1016/j.nima.2017.08.059

Y.V. Shvyd’ko, S. Stoupin, A. Cunsolo et al., High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys. 6, 196 (2010). https://doi.org/10.1038/nphys1506

K.J. Kim, Y.V. Shvyd’ko, S. Reiche, A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008). https://doi.org/10.1103/PhysRevLett.100.244802

K. J. Kim, T. Maxwell, R. Lindberg, et al., An oscillator configuration for full realization of hard X-ray free electron laser, in Proceedings of IPAC2016, Busan, Korea, pp. 801–804 (2016). https://doi.org/10.18429/JACoW-IPAC2016-MOPOW039

Y.V. Shvyd’ko, R. Lindberg, Spatiotemporal response of crystals in X-ray Bragg diffraction. Phys. Rev. ST Accel. Beams 15, 100702 (2012). https://doi.org/10.1103/PhysRevSTAB.15.100702

K.J. Kim, Y.V. Shvyd’ko, Tunable optical cavity for an X-ray free-electron-laser oscillator. Phys. Rev. ST Accel. Beams 12, 030703 (2009). https://doi.org/10.1103/PhysRevSTAB.12.030703

K. Li, H. Deng, Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai coherent light facility. Nucl. Instrum. Methods A 895, 40 (2018). https://doi.org/10.1016/j.nima.2018.03.072

K. Li, M. Song, H. Deng, Simplified model for fast optimization of a free-electron laser oscillator. Phys. Rev. ST Accel. Beams 20, 030702 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.030702

K. Li, H. Deng, Gain cascading scheme of a free-electron-laser oscillator. Phys. Rev. ST Accel. Beams 20, 110703 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.110703

K. Li, J. Yan, C. Feng, High brightness fully coherent X-ray amplifier seeded by a free-electron laser oscillator. Phys. Rev. ST Accel. Beams 21, 040702 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.040702

J. Dai, H. Deng, Z. Dai, Proposal for an X-ray free electron laser oscillator with intermediate energy electron beam. Phys. Rev. Lett. 108, 034802 (2012). https://doi.org/10.1103/PhysRevLett.108.034802

B.W. Adams, K.J. Kim, X-ray comb generation from nuclear-resonance-stabilized X-ray free-electron laser oscillator for fundamental physics and precision metrology. Phys. Rev. ST Accel. Beams 18, 030711 (2015). https://doi.org/10.1103/PhysRevSTAB.18.030711

K. Li, H. Deng, Gain-guided X-ray free-electron laser oscillator. Appl. Phys. Lett. 113, 061106 (2018). https://doi.org/10.1063/1.5037180

T. Kolodziej, Y. Shvyd’ko, D. Shu, Efficiency and coherence preservation studies of Be refractive lenses for XFELO application. J. Synchrotron Radiat. 25, 354–360 (2018). https://doi.org/10.1107/S160057751701699X

J. Xie, J. Zhuang, Y. Huang, First lasing of the Beijing FEL. Nucl. Instrum. Methods A 341, p34–38 (1994). https://doi.org/10.1016/0168-9002(94)90312-3

M. Li, X. Jin, Z. Xu, First Lasing of the CAEP FIR-FEL, in Proceeding of FEL2005, Palo Alto, CA, USA, pp. e-proc. MOOB005 (2005)

X. Jin, M. Li, Z. Xu, Experiment study on the CAEP FIR-FEL. Chin. Phys. C 30, 96–98 (2006)

Z. Xu, X. Yang, M. Li, Design of a high average power terahertz-FEL facility. J. Terahertz Sci. Electron. Inf. Technol. 11, p1–6 (2013)

M. Li, X. Yang, Z. Xu, et al., First lasing of CAEP THz free electron laser. High Power Laser Part. Beam. 29(10), p1–2 (2017). https://doi.org/10.11884/HPLPB201729.170363

M. Li, X. Yang, Z. Xu et al., Experimental study on the stimulated saturation of terahertz free electron laser. Acta Phys. Sin. 67(8), 084102 (2018). https://doi.org/10.7498/aps.67.20172413

H. Li, Q. Jia, S. Zhang et al., Design of FELiChEM, the first infrared free-electron laser user facility in China. Chin. Phys. C 41(1), 018102 (2017). https://doi.org/10.1088/1674-1137/41/1/018102

H. Li, Z. He, Q. Jia, et al., Status of FELiCHEM, a new IR-FEL in China, in Proceedings of IPAC2016, Busan, Korea, pp. P774–776 (2016). https://doi.org/10.18429/JACoW-IPAC2016-MOPOW026

Z. Zhao, H. Li, Q. Jia, Effect of cavity length detuning on the output characteristics for the middle infrared FEL oscillator of FELiChEM. Chin. Phys. C 41(10), 108101 (2017). https://doi.org/10.1088/1674-1137/41/10/108101

Z. Zhao, The Shanghai high-gain harmonic generation DUV free-electron laser. Nucl. Instrum. Methods A 393, 96–99 (2004). https://doi.org/10.1016/j.nima.2004.04.108

Z. Zhao, D. Wang, Seeded FEL experiments at the SDUV–FEL test facility. IEEE T. Nucl. Sci. 63, 930–938 (2016). https://doi.org/10.1016/B978-0-444-51727-2.50129-2

C. Feng, T. Zhang, J. Chen et al., Measurement of the average local energy spread of electron beam via coherent harmonic generation. Phys. Rev. ST Accel. Beams 14, 090701 (2011). https://doi.org/10.1103/PhysRevSTAB.14.090701

H. Deng, M. Zhang, C. Feng, Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures. Phys. Rev. Lett. 113, 254802 (2014). https://doi.org/10.1103/PhysRevLett.113.254802

B. Liu, W.B. Li, J.H. Chen et al., Demonstration of a widely-tunable and fully-coherent high-gain harmonic-generation free-electron laser. Phys. Rev. ST Accel. Beams 16, 020704 (2013). https://doi.org/10.1103/PhysRevSTAB.16.020704

H. Wang, Y. Yu, Y. Chang et al., Photodissociation dynamics of H $$_2$$ 2 O at 111.5 nm by a vacuum ultraviolet free electron laser. J. Chem. Phys. 148, 124301 (2018). https://doi.org/10.1063/1.5022108

Z. Zhao, D. Wang, Q. Gu, Status of the SXFEL facility. Appl. Sci. 7, 607 (2017). https://doi.org/10.3390/app7060607

Z. Zhao, D. Wang, Q. Gu, SXFEL: a soft X-ray free electron laser in China. Synchrotron Radiat. News 30, 29 (2017). https://doi.org/10.1080/08940886.2017.1386997