Review of enhancement for ocean thermal energy conversion system

Journal of Ocean Engineering and Science - Tập 8 - Trang 533-545 - 2023
Safaa Malik Abbas1, Hend Dakhel Skhaal Alhassany1, David Vera1, Francisco Jurado1
1Department of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen, Spain

Tài liệu tham khảo

Ju-Yong, 2019, Comprehensive evaluation of marine waste heat recovery technologies based on Hierarchy-Grey correlation analysis, J. Ocean Eng. Sci., 4, 308, 10.1016/j.joes.2019.05.006 Yung, 2020, Power enhancement of pontoon-type wave energy convertor via hydroelastic response and variable power take-off system, J. Ocean Eng. Sci., 5, 1, 10.1016/j.joes.2019.07.002 Solano, 2020, Barotropic boundary conditions and tide forcing in split-explicit high-resolution coastal ocean models, J. Ocean Eng. Sci., 5, 249, 10.1016/j.joes.2019.12.002 Kulkarni, 2021, Fluid-structure interaction-based optimisation in tidal turbines: a perspective review, J. Ocean Eng. Sci. Chen, 2016, Determination of the right wave by empirical statistics: the wave energy resource assessment and the investigation of existing marine and coastal potential compatibility, J. Ocean Eng. Sci., 1, 284, 10.1016/j.joes.2016.09.002 McGowan, 1976, Ocean thermal energy conversion-A significant solar resource, Sol. Energy., 18, 81, 10.1016/0038-092X(76)90042-6 OCEAN THERMAL ENERGY CONVERSION: Current overview and future outlook, 1481 (1995) 367–373. Liu, 2020, A review of research on the closed thermodynamic cycles of ocean thermal energy conversion, Renew. Sustain. Energy Rev., 119, 10.1016/j.rser.2019.109581 F. Chen, L. Zhang, W. Liu, L. Liu, J. Peng, Thermodynamic analysis of rankine cycle in ocean thermal energy conversion, (n.d.) 3–4. https://doi.org/10.5013/IJSSST.a.17.13.07. Ramon Ferreiro, 2014, Preliminary study of an efficient OTEC using a thermal cycle with closed thermodynamic transformations, Br. J. Appl. Sci. Technol., 4, 3840, 10.9734/BJAST/2014/11152 Rajagopalan, 2013, Estimates of global ocean thermal energy conversion (OTEC) resources using an ocean general circulation model, Renew. Energy., 50, 532, 10.1016/j.renene.2012.07.014 Wei, 2004, Current situation and prospects of oceanic thermal energy conversion, Ocean Engineering, 22, 105 Herrera, 2021, Ocean thermal energy conversion and other uses of deep seawater: a review, J. Mar. Sci. Eng., 9, 10.3390/jmse9040356 Kobayashi, 2001, The present status and features of OTEC and recent aspects of thermal energy conversion technologies, Engineering, 1 Heydt, 1993, An assessment of ocean thermal energy conversion as an advanced electric generation methodology, Proc. IEEE., 81, 409, 10.1109/5.241487 Vega, 2002, Ocean thermal energy conversion primer, Mar Technol Soc J Winter, 6, 25, 10.4031/002533202787908626 Yang, 2014, Analysis of optimization in an OTEC plant using organic Rankine cycle, Renew. Energy., 68, 25, 10.1016/j.renene.2014.01.029 Ganic, 1980, Performance study of an OTEC system, Appl. Energy., 6, 289, 10.1016/0306-2619(80)90019-7 Yamada, 2009, Performance simulation of solar-boosted ocean thermal energy conversion plant, Renew. Energy., 34, 1752, 10.1016/j.renene.2008.12.028 Aydin, 2014, Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating, Renew. Energy., 72, 154, 10.1016/j.renene.2014.07.001 Mohd Idrus, 2017, Geo-ocean thermal energy conversion (GeOTEC) power cycle/plant, Renew. Energy., 111, 372, 10.1016/j.renene.2017.03.086 Yoon, 2014, Performance characteristics of a high-efficiency R717 OTEC power cycle, Appl. Therm. Eng., 72, 304, 10.1016/j.applthermaleng.2014.05.103 Panchal, 1981, OTEC performance tests of the trane plate-fin heat exchanger, US DOE Rep Kusuda, 2015, Performance test of double-stage Rankine cycle experimental plant for OTEC, Procedia Eng, 105, 713, 10.1016/j.proeng.2015.05.061 Ikegami, 2018, Ocean Thermal Energy Conversion using double-stage Rankine Cycle, J. Mar. Sci. Eng., 6, 10.3390/jmse6010021 Ikegami, 2013, OTEC using multi-stage Rankine cycle Yamada, 2006, Thermal efficiency enhancement of ocean thermal energy conversion (OTEC) using solar thermal energy, 4130 Lee, 2015, Efficiency enhancement of the ocean thermal energy conversion system with a vapor-vapor ejector, Adv. Mech. Eng., 7, 1, 10.1177/1687814015571036 Yoon, 2015, Performance analysis of OTEC power cycle with a liquid-vapor ejector using R32/R152a, Heat Mass Transf. Und Stoffuebertragung, 51, 1597, 10.1007/s00231-015-1526-2 Yoon, 2017, Analysis of the high-efficiency EP-OTEC cycle using R152a, Renew. Energy., 105, 366, 10.1016/j.renene.2016.12.019 Miljkovic, 2017, Injection power cycle applied in OTEC power plants, Energy Procedia, 143, 823, 10.1016/j.egypro.2017.12.769 Samsuri, 2021, Simulation modeling the performance of ocean thermal energy conversion power cycle, IOP Conf. Ser. Mater. Sci. Eng., 1062 Khanmohammadi, 2020, Proposal of a novel integrated ocean thermal energy conversion system with flat plate solar collectors and thermoelectric generators: energy, exergy and environmental analyses, J. Clean. Prod., 256, 10.1016/j.jclepro.2020.120600 Wu, 2020, Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle, Energy Convers. Manag., 210, 10.1016/j.enconman.2020.112727 Schuster, 2009, Energetic and economic investigation of Organic Rankine Cycle applications, Appl. Therm. Eng., 29, 1809, 10.1016/j.applthermaleng.2008.08.016 Morisaki, 2013, Performance evaluation of heat exchangers in OTEC using ammonia/water mixture as working fluid, Open J. Fluid Dyn., 03, 302, 10.4236/ojfd.2013.34037 Bollina, 1985, Thermo-dynamic and economic optimization of OTEC and GEoOTEC plants, Int J Ambient Energy, 6, 3, 10.1080/01430750.1985.9675436 Griffin, 1975, Research on an engineering evaluation and test program, 58 Bao, 2013, A review of working fluid and expander selections for organic Rankine cycle, Renew. Sustain. Energy Rev., 24, 325, 10.1016/j.rser.2013.03.040 Chen, 2010, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renew. Sustain. Energy Rev., 14, 3059, 10.1016/j.rser.2010.07.006 Tchanche, 2009, Fluid selection for a low-temperature solar organic Rankine cycle, Appl. Therm. Eng., 29, 2468, 10.1016/j.applthermaleng.2008.12.025 Lavi, 1979, Ocean thermal energy conversion (OTEC): social and environmental issues, Energy, 4, 833, 10.1016/0360-5442(79)90015-X Hung, 2001, Waste heat recovery of organic Rankine cycle using dry fluids, Energy Convers. Manag., 42, 539, 10.1016/S0196-8904(00)00081-9 Mago, 2008, An examination of regenerative organic Rankine cycles using dry fluids, Appl. Therm. Eng., 28, 998, 10.1016/j.applthermaleng.2007.06.025 Barsness, 1978, Conceptual design of an OTEC power system using modular heat exchangers Panchal, 1993, Thermal performance of advanced heat exchangers for ammonia refrigeration systems, Heat Transf. Eng., 14, 42, 10.1080/01457639308939810 Nelson, 1978, Ocean thermal energy conversion/OTEC/plant working fluid study, Alternat. Energy Sour., 4, 1533 Wang, 2018, An innovative organic rankine cycle (ORC) based ocean thermal energy conversion (OTEC) system with performance simulation and multi-objective optimization, Appl. Therm. Eng., 145, 743, 10.1016/j.applthermaleng.2018.09.075 Rosard, 1980, Generalized parameters for selection of turbines and working fluids for OTEC power systems, J. Eng. Power, 102, 215, 10.1115/1.3230226 Ganic, 1980, On the selection of working fluids for OTEC power plants, Energy Convers Manag., 20, 9, 10.1016/0196-8904(80)90024-2 E.N. Ganic, J. Wu, Comparative study of working fluids for otec power plants, (1979). Liu, 2004, Effect of working fluids on organic Rankine cycle for waste heat recovery, Energy, 29, 1207, 10.1016/j.energy.2004.01.004 Kim, 2006, A study on the thermodynamic cycle of OTEC systems, J Korean Sol Energy Soc, 26, 9 Anderson, 2009, Ocean thermal energy conversion (OTEC): choosing a working fluid, 645 Wang, 2009, Selection of working fluids for ocean thermal energy conversion power generation organic Rankine cycle, Ocean Eng, 27, 119 Hung, 2010, a study of organic working fluids on system efficiency of an ORC using low-grade energy sources, Energy, 35, 1403, 10.1016/j.energy.2009.11.025 Sun, 2012, Optimization design and exergy analysis of organic Rankine cycle in ocean thermal energy conversion, Appl. Ocean Res., 35, 38, 10.1016/j.apor.2011.12.006 Gong, 2013, Performance analysis of 15 kW closed-cycle ocean thermal energy conversion system with different working fluids, J. Sol. Energy Eng., 135, 10.1115/1.4007770 Yoon, 2014, Efficiency comparison of subcritical OTEC power cycle using various working fluids, Heat Mass Transf. Und Stoffuebertragung., 50, 985, 10.1007/s00231-014-1310-8 Wu, 2015, Analysis of zeotropic mixtures used in OTEC Rankine cycle system, Renew Energy Resour, 33, 632 Yoon, 2014, Efficiency comparison of subcritical OTEC power cycle using various working fluids, Heat Mass Transf, 50, 985, 10.1007/s00231-014-1310-8 Vera, 2020, Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification, Renew. Energy., 162, 1399, 10.1016/j.renene.2020.07.074 Samsuri, 2021, Techno-economic efficiencies and environmental criteria of ocean thermal energy conversion closed Rankine cycle using different working fluids, IOP Conf. Ser. Mater. Sci. Eng., 1062 Uehara, 1990, Optimization of a closed-cycle OTEC system, Trans ASME J. Solar Energy Eng., 112, 247, 10.1115/1.2929931 Chen, 2019, Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the Rankine cycle mode, Energy, 183, 497, 10.1016/j.energy.2019.04.008 Sepehri, 2018, Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor, Chem. Eng. Process. - Process Intensif., 128, 10, 10.1016/j.cep.2018.04.006 Sepehri, 2019, Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process, Appl. Water Sci., 9, 1, 10.1007/s13201-019-1017-6 Kalina, 1984, Combined-cycle system with novel bottoming cycle, J. Eng. Gas Turbines Power, 106, 737, 10.1115/1.3239632 Kalina, 1983, Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation Ikegami, 2005, Effect of regenerator heat transfer performance on the cycle thermal efficiency of OTEC using ammonia - water as working fluid, 15 Huang, 2003, Research on thermodynamic properties of ammonia-water mixtures for power cycles, Power Eng, 23, 2236 Saleh, 2007, Working fluids for low-temperature organic Rankine cycles, Energy, 32, 1210, 10.1016/j.energy.2006.07.001 Ni, 2013, Recovery of waste heat of low-temperature flue gas by parametric optimization on organic Rankine cycle with non-azeotropic mixtures, CIE J, 64, 3985 Wall, 1989, Exergy study of the kalina cycle, Am. Soc. Mech. Eng. El-Sayed, 1985, A theoretical comparison of the Rankine and Kalina cycles, 97 Uehara, 1993, Parametric performance analysis of OTEC using Kalina cycle Nemati, 2017, A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: a case study for CGAM cogeneration system, case study, Therm. Eng., 9, 1 Uehara, 1998, Performance analysis of OTEC system using a cycle with absorption and extraction processes, Transac. JSME, Series B, 64, 384 Dhanak, 2016 Liu, 2012, Progress of closed-cycle OTEC and study of a new cycle of OTEC, Adv. Mater. Res., 354–355, 275, 10.4028/www.scientific.net/AMR.535-537.275 Xu, 2016, 5 Chen, 2016 Yuan, 2012, Theoretical and experimental investigation of a power cycle using ammonia-water as working fluid, Ocean University China, 9 Yan, 2010, Thermodynamic study of ammonia regenerator cycle driven by ocean thermal energy Li, 2020, Thermodynamic optimization of Rankine cycle using CO 2 -based binary zeotropic mixture for ocean thermal energy conversion, Appl. Therm. Eng., 178, 10.1016/j.applthermaleng.2020.115617 Yuan, 2014, Performance analysis of an absorption power cycle for ocean thermal energy conversion, Energy Convers. Manag., 87, 199, 10.1016/j.enconman.2014.07.015 Soto, 2014, Thermal power plant efficiency enhancement with ocean thermal energy conversion, Appl. Therm. Eng., 62, 105, 10.1016/j.applthermaleng.2013.09.025 Iqbal, 1976, Use of mixtures as working fluids in ocean thermal energy conversion cycles, Proc. Oklahoma Acad. Sci., 56, 114 Kalina A.I. Generation of energy by means of a working fluid, and regeneration of a working fluid: US, US 4346561 1982. Uehara, 1995 Ikegami, 2010, Effect of working fluid flow rate and ammonia concentration on OTEC using ammonia/water mixture as working fluid, 1026 Lee, 2014, A novel working fluid for building air-conditioning and ocean thermal energy conversion, Korean J. Chem. Eng., 31, 1732, 10.1007/s11814-014-0223-z Schobeiri, 1990, Thermo-fiuid dynamic design study of single and double-inflow radial and single-stage axial steam turbines for open-cycle thermal energy conversion net power-producing experiment facility in hawaii, J. Energy Resour. Technol. Trans. ASME., 112, 41, 10.1115/1.2905711 Marelli, 2011, Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application, Energy, 36, 459, 10.1016/j.energy.2010.10.019 Kang, 2012, Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid, Energy, 41, 514, 10.1016/j.energy.2012.02.035 Nithesh, 2016, Design and performance analysis of radial-inflow turboexpander for OTEC application, Renew. Energy., 85, 834, 10.1016/j.renene.2015.07.018 Nithesh, 2016, Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system, Appl. Energy., 167, 1, 10.1016/j.apenergy.2016.01.033 Nithesh, 2016, Integrated CFD-surrogate optimization to enhance the efficiency of turbine designed for OTEC, Main Themes, 148 Uehara, 1990, Optimization of a closed-cycle system, J Sol Energy Eng, 112, 247, 10.1115/1.2929931 Sheppard, 1976, Flow field near an ocean thermal energy conversion plant, Coastal Eng. Proc., 1, 3068 Chaplin, 1992, Appraisal of lightweight moorings for deep water, Proc. Annu. Offshore Technol. Conf., 189 Xiang, 2013, OTEC cold water pipe global dynamic design for ship-shaped vessels, OMAE, 10927 Faltinsen, 1993, 1 Barr R.A., O'Dea J.F., Ankudinov V. Theoretical evaluations of the seakeeping performance and resistance propulsion characteristics of five candidate OTEC platforms, Tech. rep; 1976. International, 1980 Ertekin, 1993, Positioning of a floating otec plant by surface intake water, Int. J. Offshore Polar Eng., 3