Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage

Energy and Environmental Science - Tập 11 Số 10 - Trang 2696-2767
Turgut M. Gür1,2,3
1Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 USA
2Stanford
3Stanford University

Tóm tắt

Large scale storage technologies are vital to increase the share of renewable electricity in the global energy mix.

Từ khóa


Tài liệu tham khảo

DOE-EIA International Energy Outlook 2017 (Sept. 2017) report No: DOE/EIA-0484(2017) https://www.eia.gov/outlooks/ieo/ieo_tables.php , accessed Nov. 2, 2017

World Energy Outlook 2015, International Energy Agency, London, Nov. 10, 2015, see http://www.worldenergyoutlook.org/weo2015/

Global Greenhouse Gas Emissions Data (2017), US Environmental Protection Agency, https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data , accessed Nov 10, 2017

Gür, 2017, J. Electrochem. Soc., 164, F1587, 10.1149/2.0511714jes

Gür, 2013, Chem. Rev., 113, 6179, 10.1021/cr400072b

Gür, 2016, Prog. Energy Combust. Sci., 54, 1, 10.1016/j.pecs.2015.10.004

Next Generation Wind and Solar Power: From cost to value. IEA 2016 report, https://www.iea.org/publications/freepublications/publication/Next_Generation_Windand_Solar_PowerFrom_Cost_to_ValueFull_Report.pdf

www.independent.co.uk/environment/solar-and-wind-power-cheaper-than-fossil-fuels-for-the-first-time-a7509251.html , accessed Nov 10, 2017

International Energy Agency, World Energy Outlook 2016 (Nov. 2016), also see http://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html

www.bloomberg.com/news/articles/2016-12-15/world-energy-hits-a-turning-point-solar-that-s-cheaper-thanwind , accessed Nov 10, 2017

DOE-EIA International Energy Outlook 2017 (Sept. 2017) report No: DOE/EIA-0484(2017) https://www.eia.gov/outlooks/ieo/ieo_tables.php , accessed Nov. 2, 2017

US-DOE Energy Information Administration, Today in Energy, https://www.eia.gov/todayinenergy/detail.php?id=31372 , accessed Nov. 19, 2017

Bloomberg Technology News, July 31, 2017, https://www.bloomberg.com/news/articles/2017-07-31/alphabet-wants-to-fix-renewable-energy-s-storage-problem-with-salt

www.latimes.com/projects/la-fi-electricity-solar/

DOE Global Energy Storage Database, Office of Electricity Delivery and Energy Reliability, http://www.energystorageexchange.org/projects/data_visualization , accessed Nov. 9, 2017

Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency (IRENA 2017), available at http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf , accessed July 6, 2018

Grid Energy Storage, US Department of Energy, Dec. 2013, http://www.energy.gov/sites/prod/files/2014/09/f18/Grid%20Energy%20Storage%20December%202013.pdf

Energy Technology Perspectives 2015, International Energy Agency, www.iea.org/newsroomandevents/graphics/2015-06-30-installed-global-capacity-for-grid-connected-storage.html

Dunn, 2011, Science, 334, 928, 10.1126/science.1212741

Electrical Energy Storage Technology Options report #1020676, Dec. 2010, Electric Power Research Institute, Palo Alto, CA

Abraham, 2015, J. Phys. Chem. Lett., 6, 830, 10.1021/jz5026273

Ibrahim, 2008, Renewable Sustainable Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023

Liu, 2010, Adv. Energy Mater., 22, E28, 10.1002/adma.200903328

Hadjipaschalis, 2009, Renewable Sustainable Energy Rev., 13, 1513, 10.1016/j.rser.2008.09.028

Hall, 2008, Energy Policy, 36, 4352, 10.1016/j.enpol.2008.09.037

Radousky, 2012, Nanotechnology, 23, 502001, 10.1088/0957-4484/23/50/502001

Evans, 2012, Renewable Sustainable Energy Rev., 16, 4144, 10.1016/j.rser.2012.03.048

Luo, 2015, Appl. Energy, 137, 511, 10.1016/j.apenergy.2014.09.081

Wachsman, 2012, Energy Environ. Sci., 5, 5498, 10.1039/C1EE02445K

Arico, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368

Armand, 2008, Nature, 451, 652, 10.1038/451652a

Yang, 2011, Chem. Rev., 111, 3577, 10.1021/cr100290v

Whittingham, 2008, MRS Bull., 33, 411, 10.1557/mrs2008.82

Barnhart, 2013, Energy Environ. Sci., 6, 1083, 10.1039/c3ee24040a

Rand, 2011, J. Solid State Electrochem., 15, 1579, 10.1007/s10008-011-1410-z

Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k

Groger, 2015, J. Electrochem. Soc., 162, A2605, 10.1149/2.0211514jes

Muench, 2016, Chem. Rev., 116, 9438, 10.1021/acs.chemrev.6b00070

Tarascon, 2001, Nature, 414, 359, 10.1038/35104644

Bruce, 2008, Solid State Ionics, 179, 752, 10.1016/j.ssi.2008.01.095

Lithium Ion Batteries: Fundamentals and Performance , ed. W. Wakihara and O. Yamamoto , Kodansha Ltd. Tokyo (Japan), Wiley-VCH Verlag GmbH , Weinheim (Germany), Tokyo , 1998

Kang, 2009, Nature, 458, 190, 10.1038/nature07853

Choi, 2012, Angew. Chem., Int. Ed., 51, 9994, 10.1002/anie.201201429

Zu, 2011, Energy Environ. Sci., 4, 2614, 10.1039/c0ee00777c

Whittingham, 2004, Chem. Rev., 104, 4271, 10.1021/cr020731c

Whittingham, 2014, Chem. Rev., 114, 11414, 10.1021/cr5003003

Ellis, 2010, Chem. Mater., 22, 691, 10.1021/cm902696j

Goodenough, 2010, Chem. Mater., 22, 587, 10.1021/cm901452z

Scrosati, 1992, J. Electrochem. Soc., 139, 2776, 10.1149/1.2068978

Goodenough, 2013, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438

Scrosati, 2010, J. Power Sources, 195, 2419, 10.1016/j.jpowsour.2009.11.048

Etacheri, 2011, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b

Choi, 2016, Nat. Rev. Mater., 1, 1, 10.1038/natrevmats.2016.13

Xu, 2004, Chem. Rev., 104, 4303, 10.1021/cr030203g

Armand, 2009, Nat. Mater., 8, 621, 10.1038/nmat2448

Angell, 2012, Faraday Discuss., 154, 9, 10.1039/C1FD00112D

Croce, 2000, Solid State Ionics, 135, 47, 10.1016/S0167-2738(00)00329-5

Wright, 2002, MRS Bull., 27, 597, 10.1557/mrs2002.194

Thangadurai, 2014, Chem. Soc. Rev., 43, 4714, 10.1039/c4cs00020j

Li, 1994, Science, 264, 1115, 10.1126/science.264.5162.1115

Yang, 2017, Joule, 1, 122, 10.1016/j.joule.2017.08.009

Obrovac, 2014, Chem. Rev., 114, 11444, 10.1021/cr500207g

Kasavajjula, 2007, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084

Cheng, 2017, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115

Wen, 1979, J. Electrochem. Soc., 126, 2258, 10.1149/1.2128939

Weppner, 1977, J. Electrochem. Soc., 124, 1569, 10.1149/1.2133112

Weppner, 1977, J. Solid State Chem., 22, 297, 10.1016/0022-4596(77)90006-8

Boukamp, 1981, J. Electrochem. Soc., 128, 725, 10.1149/1.2127495

Chan, 2008, Nat. Nanothechnol., 3, 31, 10.1038/nnano.2007.411

Wen, 1981, J. Electrochem. Soc., 128, 1181, 10.1149/1.2127590

Trevey, 2013, Nanotechnology, 24, 424001, 10.1088/0957-4484/24/42/424001

Whittingham, 1976, Science, 192, 1126, 10.1126/science.192.4244.1126

Son, 2015, Nat. Commun., 6, 7393, 10.1038/ncomms8393

Chan, 2008, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411

Wu, 2012, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004

Chiang, 2010, Science, 330, 1485, 10.1126/science.1198591

Jiang, 2017, J. Mater. Sci., 52, 3670, 10.1007/s10853-016-0599-8

Goriparti, 2014, J. Power Sources, 257, 421, 10.1016/j.jpowsour.2013.11.103

Kaskhedikar, 2009, Adv. Mater., 21, 2664, 10.1002/adma.200901079

Liu, 2011, Adv. Mater., 23, 4679, 10.1002/adma.201102421

Zheng, 2014, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152

McDowell, 2011, Nano Lett., 11, 4018, 10.1021/nl202630n

Wu, 2003, J. Power Sources, 114, 228, 10.1016/S0378-7753(02)00596-7

Thackeray, 2002, Nat. Mater., 1, 81, 10.1038/nmat736

Tukamoto, 1997, J. Electrochem. Soc., 144, 3164, 10.1149/1.1837976

Chen, 2001, J. Electrochem. Soc., 148, A102, 10.1149/1.1344523

Padhi, 1997, J. Electrochem. Soc., 144, 1188, 10.1149/1.1837571

Ravet, 2001, J. Power Sources, 97–98, 503, 10.1016/S0378-7753(01)00727-3

Wang, 2006, Angew. Chem., 45, 8197, 10.1002/anie.200602891

Chung, 2002, Nat. Mater., 1, 123, 10.1038/nmat732

Tarascon, 2010, Chem. Mater., 22, 724, 10.1021/cm9030478

Amatucci, 2002, J. Electrochem. Soc., 149, K31, 10.1149/1.1516778

Gallagher, 2014, Energy Environ. Sci., 7, 1555, 10.1039/c3ee43870h

Radin, 2017, Adv. Energy Mater., 7, 1602888, 10.1002/aenm.201602888

Poizot, 2000, Nature, 407, 496, 10.1038/35035045

Badway, 2003, J. Electrochem. Soc., 150, A1209, 10.1149/1.1596162

Yamakawa, 2009, J. Am. Chem. Soc., 131, 10525, 10.1021/ja902639w

Badway, 2003, J. Electrochem. Soc., 150, A1318, 10.1149/1.1602454

Wang, 2011, J. Am. Chem. Soc., 133, 18828, 10.1021/ja206268a

Peled, 1979, J. Electrochem. Soc., 126, 2047, 10.1149/1.2128859

Steinruck, 2018, Energy Environ. Sci., 11, 594, 10.1039/C7EE02724A

Aurbach, 2007, J. Power Sources, 165, 491, 10.1016/j.jpowsour.2006.10.025

Xu, 2014, Chem. Rev., 114, 11503, 10.1021/cr500003w

Chen, 2016, Mater. Horiz., 3, 487, 10.1039/C6MH00218H

Huggins, 2013, J. Electrochem. Soc., 160, A3001, 10.1149/2.001305jes

Tao, 2017, ACS Appl. Mater. Interfaces, 9, 7003, 10.1021/acsami.6b13859

Ishikawa, 2005, J. Power Sources, 146, 199, 10.1016/j.jpowsour.2005.03.007

Qian, 2015, Nano Energy, 15, 135, 10.1016/j.nanoen.2015.04.009

Zhang, 2017, Chem. Soc. Rev., 46, 797, 10.1039/C6CS00491A

Miller III, 2016, Acc. Chem. Res., 50, 590, 10.1021/acs.accounts.6b00568

Liu, 2015, Nano Lett., 15, 2740, 10.1021/acs.nanolett.5b00600

Fergus, 2010, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076

Kim, 2015, J. Power Sources, 282, 299, 10.1016/j.jpowsour.2015.02.054

Knauth, 2009, Solid State Ionics, 180, 911, 10.1016/j.ssi.2009.03.022

Manthiram, 2017, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103

Osada, 2016, Angew. Chem., Int. Ed., 55, 500, 10.1002/anie.201504971

Watanabe, 2017, Chem. Rev., 117, 7190, 10.1021/acs.chemrev.6b00504

Zhang, 2006, J. Phys. Chem. Ref. Data, 35, 1475, 10.1063/1.2204959

Pasta, 2012, Nat. Commun., 3, 1149, 10.1038/ncomms2139

Liu, 1991, J. Electrochem. Soc., 138, 1891, 10.1149/1.2085895

Tarascon, 1996, Solid State Ionics, 86–88, 49, 10.1016/0167-2738(96)00330-X

Blake, 2017, Adv. Energy Mater., 7, 1602920, 10.1002/aenm.201602920

Janek, 2016, Nat. Energy, 1, 16141, 10.1038/nenergy.2016.141

Aldalur, 2018, J. Power Sources, 383, 144, 10.1016/j.jpowsour.2018.02.066

Kasemchainan, 2018, Johnson Matthey Technol. Rev., 62, 177, 10.1595/205651318X696747

Kamaya, 2011, Nat. Mater., 10, 682, 10.1038/nmat3066

Kato, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2016.30

Miara, 2015, Chem. Mater., 27, 4040, 10.1021/acs.chemmater.5b01023

Zhao, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 11069, 10.1073/pnas.1708489114

Liu, 2015, Nano Lett., 15, 2740, 10.1021/acs.nanolett.5b00600

Song, 2013, Nano Lett., 13, 5891, 10.1021/nl402793z

Manthiram, 2014, Chem. Rev., 114, 11751, 10.1021/cr500062v

Manthiram, 2013, Acc. Chem. Res., 46, 1125, 10.1021/ar300179v

Song, 2013, Nanoscale, 5, 2186, 10.1039/c2nr33044j

Zheng, 2011, Nano Lett., 11, 4462, 10.1021/nl2027684

Wild, 2015, Energy Environ. Sci., 8, 3477, 10.1039/C5EE01388G

Eroglu, 2015, J. Electrochem. Soc., 162, A982, 10.1149/2.0611506jes

Yabuuchi, 2014, Chem. Rev., 114, 11636, 10.1021/cr500192f

Muldoon, 2014, Chem. Rev., 114, 11683, 10.1021/cr500049y

Kubota, 2015, J. Electrochem. Soc., 162, A2538, 10.1149/2.0151514jes

Eftekhari, 2016, ACS Appl. Mater. Interfaces, 9, 4404, 10.1021/acsami.6b07989

Pan, 2013, Energy Environ. Sci., 6, 2338, 10.1039/c3ee40847g

Slater, 2013, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691

Lipson, 2015, Chem. Mater., 27, 8442, 10.1021/acs.chemmater.5b04027

Kubota, 2018, Chem. Rec., 18, 1, 10.1002/tcr.201700057

Dahbi, 2014, Phys. Chem. Chem. Phys., 16, 15007, 10.1039/c4cp00826j

Stevens, 2000, J. Electrochem. Soc., 147, 1271, 10.1149/1.1393348

Chen, 2008, ChemSusChem, 1, 348, 10.1002/cssc.200700161

Lee, 2017, Nat. Energy, 2, 861, 10.1038/s41560-017-0014-y

Barpanda, 2014, Nat. Commun., 5, 4358, 10.1038/ncomms5358

Zhou, 2017, ACS Cent. Sci., 3, 52, 10.1021/acscentsci.6b00321

Wang, 2013, Angew. Chem., Int. Ed., 52, 1964, 10.1002/anie.201206854

Wessells, 2011, Nano Lett., 11, 5421, 10.1021/nl203193q

Eftekhari, 2004, J. Power Sources, 126, 221, 10.1016/j.jpowsour.2003.08.007

Pramudita, 2017, Adv. Energy Mater., 7, 1602911, 10.1002/aenm.201602911

Canepa, 2017, Nat. Commun., 8, 1759, 10.1038/s41467-017-01772-1

Li, 2002, J. Power Sources, 110, 1, 10.1016/S0378-7753(01)01014-X

Jayaprakash, 2011, Chem. Commun., 47, 12610, 10.1039/c1cc15779e

Lin, 2015, Nature, 520, 324, 10.1038/nature14340

Engstrom, 1981, Solid State Ionics, 2, 265, 10.1016/0167-2738(81)90027-8

Lu, 2010, J. Power Sources, 195, 2431, 10.1016/j.jpowsour.2009.11.120

Hueso, 2013, Energy Environ. Sci., 6, 734, 10.1039/c3ee24086j

Ellis, 2012, Curr. Opin. Solid State Mater. Sci., 16, 168, 10.1016/j.cossms.2012.04.002

Lu, 2013, Energy Environ. Sci., 6, 299, 10.1039/C2EE23606K

Lu, 2014, Nat. Commun., 5, 4578, 10.1038/ncomms5578

Wang, 2007, Electrochem. Commun., 9, 31, 10.1016/j.elecom.2006.08.029

Qiang, 2017, Nano Energy, 32, 59, 10.1016/j.nanoen.2016.12.018

Wei, 2016, Nat. Commun., 7, 11722, 10.1038/ncomms11722

Goodenough, 1976, Mater. Res. Bull., 11, 203, 10.1016/0025-5408(76)90077-5

Bohnke, 1999, Solid State Ionics, 122, 127, 10.1016/S0167-2738(99)00062-4

Schmid, 1982, Solid State Ionics, 6, 57, 10.1016/0167-2738(82)90096-0

Blurton, 1979, J. Power Sources, 4, 263, 10.1016/0378-7753(79)80001-4

Zhang, 2010, J. Power Sources, 195, 1202, 10.1016/j.jpowsour.2009.08.063

Girishkumar, 2010, J. Phys. Chem. Lett., 1, 2193, 10.1021/jz1005384

Li, 2014, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C

Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010

Rudd, 1994, J. Power Sources, 47, 329, 10.1016/0378-7753(94)87012-8

Wessels, 2011, J. Electrochem. Soc., 159, A1, 10.1149/2.060202jes

Zhang, 2016, Green Energy Environ., 1, 4, 10.1016/j.gee.2016.04.004

Cheng, 2012, Chem. Soc. Rev., 41, 2172, 10.1039/c1cs15228a

K. Kinoshita , Electrochemical oxygen technology , J. Wiley , New York , 1992

Lu, 2010, J. Am. Chem. Soc., 132, 12170, 10.1021/ja1036572

Mao, 2003, Electrochim. Acta, 48, 1015, 10.1016/S0013-4686(02)00815-0

Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v

Ng, 2014, Energy Environ. Sci., 7, 2017, 10.1039/c3ee44059a

Norskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069

Zheng, 2008, J. Electrochem. Soc., 155, A432, 10.1149/1.2901961

Luntz, 2014, Chem. Rev., 114, 11721, 10.1021/cr500054y

Ogasawara, 2006, J. Am. Chem. Soc., 128, 1390, 10.1021/ja056811q

Kraytsberg, 2011, J. Power Sources, 196, 886, 10.1016/j.jpowsour.2010.09.031

Christensen, 2012, J. Electrochem. Soc., 159, R1, 10.1149/2.086202jes

Grande, 2015, Adv. Mater., 27, 784, 10.1002/adma.201403064

Aurbach, 2016, Nat. Energy, 1, 161281, 10.1038/nenergy.2016.128

Balaish, 2014, Phys. Chem. Chem. Phys., 16, 2801, 10.1039/c3cp54165g

Lu, 2013, Energy Environ. Sci., 6, 750, 10.1039/c3ee23966g

Debart, 2007, J. Power Sources, 174, 1177, 10.1016/j.jpowsour.2007.06.180

Ma, 2015, Energy Environ. Sci., 8, 2144, 10.1039/C5EE00838G

Sun, 2017, Sci. Rep., 7, 41217, 10.1038/srep41217

Yi, 2017, Energy Environ. Sci., 10, 860, 10.1039/C6EE03499C

Xu, 2010, J. Electrochem. Soc., 157, A219, 10.1149/1.3269928

Kuboki, 2005, J. Power Sources, 146, 766, 10.1016/j.jpowsour.2005.03.082

McCloskey, 2011, J. Am. Chem. Soc., 133, 18038, 10.1021/ja207229n

Wandt, 2016, Angew. Chem., 128, 7006, 10.1002/ange.201602142

Mahne, 2018, Angew. Chem., Int. Ed., 57, 5529, 10.1002/anie.201802277

Mahne, 2017, Nat. Energy, 2, 17036, 10.1038/nenergy.2017.36

Luntz, 2017, Nat. Energy, 2, 17056, 10.1038/nenergy.2017.56

Johnson, 2014, Nat. Chem., 6, 1091, 10.1038/nchem.2101

Gutmann, 1976, Coord. Chem. Rev., 18, 225, 10.1016/S0010-8545(00)82045-7

Chen, 2013, Nat. Chem., 5, 489, 10.1038/nchem.1646

Peng, 2012, Science, 337, 563, 10.1126/science.1223985

McCloskey, 2012, J. Phys. Chem. Lett., 3, 997, 10.1021/jz300243r

Aetukuri, 2014, Nat. Chem., 7, 50, 10.1038/nchem.2132

Elia, 2014, Nano Lett., 14, 6572, 10.1021/nl5031985

Jung, 2010, Nat. Chem., 4, 579, 10.1038/nchem.1376

Gu, 2017, J. Mater. Chem. A, 5, 7651, 10.1039/C7TA01693J

Pan, 2018, Adv. Sci., 1700691, 10.1002/advs.201700691

Xu, 2015, Angew. Chem., Int. Ed., 54, 15390, 10.1002/anie.201508848

Fu, 2016, Energy Environ. Sci., 9, 663, 10.1039/C5EE03404C

Ma, 2007, J. Mater. Chem., 17, 684, 10.1039/B609783A

Lee, 2006, J. Power Sources, 160, 1436, 10.1016/j.jpowsour.2006.02.019

Banik, 2013, J. Electrochem. Soc., 160, D519, 10.1149/2.040311jes

Ein-Eli, 2003, J. Power Sources, 114, 330, 10.1016/S0378-7753(02)00598-0

Lee, 2013, J. Power Sources, 227, 177, 10.1016/j.jpowsour.2012.11.046

Fu, 2017, Nano Energy, 39, 77, 10.1016/j.nanoen.2017.06.029

Lee, 2014, Adv. Energy Mater., 4, 1301389, 10.1002/aenm.201301389

Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812

Perry, 2016, J. Electrochem. Soc., 163, A5064, 10.1149/2.0101601jes

Wang, 2013, Adv. Funct. Mater., 23, 970, 10.1002/adfm.201200694

Weber, 2011, J. Appl. Electrochem., 41, 1137, 10.1007/s10800-011-0348-2

Skyllas-Kazacos, 2011, J. Electrochem. Soc., 158, R55, 10.1149/1.3599565

Alotto, 2014, Renewable Sustainable Energy Rev., 29, 325, 10.1016/j.rser.2013.08.001

Ye, 2018, J. Electrochem. Energy Convers. Storage, 15, 010801, 10.1115/1.4037248

JES Focus Issue on Redox Flow Batteries – Reversible Fuel Cells, J. Electrochem. Soc. , 2016 , 163 (1)

Wei, 2017, ACS Energy Lett., 2, 2187, 10.1021/acsenergylett.7b00650

Lin, 2015, Science, 349, 1529, 10.1126/science.aab3033

Chen, 2016, J. Electrochem. Soc., 163, A5010, 10.1149/2.0021601jes

Darling, 2014, Energy Environ. Sci., 7, 3459, 10.1039/C4EE02158D

Grid -Scale Rampable Intermittent Dispatchable Storage (GRIDS), US Department of Energy, Advanced Research Projects Agency – Energy (ARPA-E) Funding Opportunity Announcement DE-FOA-0000290 CFDA# 81,135, Washington D.C., March 2, 2010, https://arpa-e-foa.energy.gov/Default.aspx?Archive=1#FoaId85e239bb-8908-4d2c-ab10-dd02d85e7d78 , accessed April 6, 2018

Ding, 2013, J. Phys. Chem. Lett., 4, 1281, 10.1021/jz4001032

Parasuraman, 2013, Electrochim. Acta, 101, 27, 10.1016/j.electacta.2012.09.067

Cunha, 2015, Int. J. Energy Res., 39, 889, 10.1002/er.3260

Kear, 2012, Int. J. Energy Res., 36, 1105, 10.1002/er.1863

Shinkle, 2011, J. Appl. Electrochem., 41, 1191, 10.1007/s10800-011-0314-z

Suresh, 2014, RSC Adv., 4, 37947, 10.1039/C4RA05946H

Biswas, 2017, Energy Environ. Sci., 10, 114, 10.1039/C6EE02782B

Wang, 2012, Chem. Soc. Rev., 41, 797, 10.1039/C1CS15060J

Gonzalez, 2016, Renewable Sustainable Energy Rev., 58, 1189, 10.1016/j.rser.2015.12.249

Zhang, 2009, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j

Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297

Burke, 2007, Electrochim. Acta, 53, 1083, 10.1016/j.electacta.2007.01.011

Zhi, 2013, Nanoscale, 5, 72, 10.1039/C2NR32040A

Zhong, 2015, Chem. Soc. Rev., 44, 7484, 10.1039/C5CS00303B

Burke, 2000, J. Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7

Simon, 2014, Science, 343, 1210, 10.1126/science.1249625

Burke, 2007, Proc. IEEE, 95, 806, 10.1109/JPROC.2007.892490

B. E. Conway , Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , Kluwer Academics/Plenum Publisher , New York , 1999

Ye, 2018, Joule, 2, 245, 10.1016/j.joule.2017.11.011

Huang, 2012, Small, 8, 1805, 10.1002/smll.201102635

Conway, 2002, J. Power Sources, 105, 169, 10.1016/S0378-7753(01)00936-3

Mastragostino, 2007, J. Power Sources, 174, 89, 10.1016/j.jpowsour.2007.06.009

Amatucci, 2001, J. Electrochem. Soc., 148, A930, 10.1149/1.1383553

Lin, 2011, J. Power Sources, 196, 851, 10.1016/j.jpowsour.2010.07.066

Augustyn, 2013, Nat. Mater., 12, 518, 10.1038/nmat3601

Stambouli, 2002, Renewable Sustainable Energy Rev., 6, 433, 10.1016/S1364-0321(02)00014-X

Lo Faro, 2012, Fuel, 102, 554, 10.1016/j.fuel.2012.07.031

Shao, 2005, Nature, 435, 795, 10.1038/nature03673

Zhan, 2005, Solid State Ionics, 176, 871, 10.1016/j.ssi.2004.12.005

Park, 2000, Appl. Catal., A, 200, 55, 10.1016/S0926-860X(00)00650-5

Costa-Nunes, 2003, J. Electrochem. Soc., 150, A858, 10.1149/1.1574807

Murray, 2002, J. Electrochem. Soc., 149, A1127, 10.1149/1.1496484

Liu, 2012, Nano Energy, 1, 448, 10.1016/j.nanoen.2012.02.006

Kim, 2001, J. Electrochem. Soc., 148, A693, 10.1149/1.1374216

Gür, 1992, J. Electrochem. Soc., 132, L95, 10.1149/1.2069025

Gür, 2010, J. Electrochem. Soc., 157, B571, 10.1149/1.3357050

Lee, 2008, Electrochem. Solid-State Lett., 11, B20, 10.1149/1.2821136

Alexander, 2012, J. Electrochem. Soc., 159, B347, 10.1149/2.096203jes

Gür, 2010, J. Power Sources, 195, 1085, 10.1016/j.jpowsour.2009.08.098

Homel, 2010, J. Power Sources, 195, 6367, 10.1016/j.jpowsour.2010.04.020

Wang, 2017, Renewable Sustainable Energy Rev., 75, 775, 10.1016/j.rser.2016.11.054

Pettersson, 2006, J. Power Sources, 157, 28, 10.1016/j.jpowsour.2006.01.059

Dihrab, 2009, Renewable Sustainable Energy Rev., 13, 1663, 10.1016/j.rser.2008.09.029

Sadhasivam, 2017, Int. J. Hydrogen Energy, 42, 4415, 10.1016/j.ijhydene.2016.10.140

Gasteiger, 2005, Appl. Catal., B, 56, 9, 10.1016/j.apcatb.2004.06.021

Kong, 2012, Electrochem. Commun., 14, 63, 10.1016/j.elecom.2011.11.002

Sheng, 2010, J. Electrochem. Soc., 157, B1529, 10.1149/1.3483106

Durst, 2014, Energy Environ. Sci., 7, 2255, 10.1039/C4EE00440J

Hu, 2009, Electrochem. Commun., 11, 2212, 10.1016/j.elecom.2009.09.033

Wang, 2016, Renewable Sustainable Energy Rev., 65, 961, 10.1016/j.rser.2016.07.046

Sridhar, 2005, Electrochem. Soc., Proc., 295

Bastidas, 2006, J. Mater. Chem., 16, 1603, 10.1039/b600532b

Gomez, 2016, Renewable Sustainable Energy Rev., 61, 155, 10.1016/j.rser.2016.03.005

Ruiz-Morales, 2011, RSC Adv., 1, 1403, 10.1039/c1ra00284h

Wendel, 2016, Appl. Energy, 172, 118, 10.1016/j.apenergy.2016.03.054

Meeting the needs of the future warriors, The National Academic Press, 2004, http://www.nap.edu/openbook/0309092612/html/89.html

Eguchi, 1996, Solid State Ionics, 86–88, 1245, 10.1016/0167-2738(96)00295-0

Ebbesen, 2014, Chem. Rev., 114, 10697, 10.1021/cr5000865

Laguna-Bercero, 2012, J. Power Sources, 203, 4, 10.1016/j.jpowsour.2011.12.019

Graves, 2015, Nat. Mater., 14, 239, 10.1038/nmat4165

Hong, 2014, Int. J. Hydrogen Energy, 39, 20819, 10.1016/j.ijhydene.2014.06.114

Bi, 2014, Chem. Soc. Rev., 43, 8255, 10.1039/C4CS00194J

Shim, 2009, Chem. Mater., 21, 3290, 10.1021/cm900820p

Duan, 2015, Science, 349, 1321, 10.1126/science.aab3987

Tao, 2003, Nat. Mater., 2, 320, 10.1038/nmat871

Jensen, 2015, Energy Environ. Sci., 5, 2471, 10.1039/C5EE01485A

Zhan, 2011, Energy Environ. Sci., 4, 3951, 10.1039/c1ee01982a

Zhan, 2012, RSC Adv., 2, 4075, 10.1039/c2ra20413d

An, 2014, MRS Bull., 39, 798, 10.1557/mrs.2014.171

Macoteguy, 2013, Int. J. Hydrogen Energy, 38, 15887, 10.1016/j.ijhydene.2013.09.045

Irvine, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2015.14

Ogden, 1999, Annu. Rev. Energy Environ., 24, 227, 10.1146/annurev.energy.24.1.227

Winter, 2009, Int. J. Hydrogen Energy, 34, S1, 10.1016/j.ijhydene.2009.05.063

Barthelemy, 2017, Int. J. Hydrogen Energy, 42, 7254, 10.1016/j.ijhydene.2016.03.178

Durbin, 2013, Int. J. Hydrogen Energy, 38, 14595, 10.1016/j.ijhydene.2013.07.058

Langmi, 2014, Electrochim. Acta, 128, 368, 10.1016/j.electacta.2013.10.190

de Jonghe, 2010, ChemSusChem, 3, 1332, 10.1002/cssc.201000248

NREL Technology Brief: Analysis of current-day commercial electrolyzers, NREL/FS-840-36705, 2004, http://www.nrel.gov/docs/fy04osti/36705.pdf

Hydrogen Production Cost Analysis, National Renewable Energy Laboratory, https://www.nrel.gov/hydrogen/production-cost-analysis.html

G. Saur and C.Ainscough , US Geographic Analysis of the Cost of Hydrogen from Electrolysis, National Renewable Energy Laboratory (NREL, Technical report: NREL/TP-5600-52640, (Dec. 2011)), https://www.nrel.gov/docs/fy12osti/52640.pdf , accessed April 3, 2018

US DOE Office of Energy Efficiency & Renewable Energy (EERE), Section 3.1. Hydrogen Production, https://www.energy.gov/sites/prod/files/2015/06/f23/fcto_myrdd_production.pdf at https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 , accessed April 2, 2018

Urus, 2012, Proc. IEEE, 100, 410, 10.1109/JPROC.2011.2156750

Carmo, 2013, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151

Zeng, 2010, Prog. Energy Combust. Sci., 36, 307, 10.1016/j.pecs.2009.11.002

Marini, 2012, Electrochim. Acta, 82, 384, 10.1016/j.electacta.2012.05.011

Babic, 2017, J. Electrochem. Soc., 164, F387, 10.1149/2.1441704jes

Solar-Hydrogen Energy Systems: An Authoritative Review of Water-Splitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilization , ed. T. Ohta , Pergamon Press , 2013

http://energy.gov/eere/fuelcells/hydrogen-production-electrolysis

Allebrod, 2013, J. Power Sources, 229, 22, 10.1016/j.jpowsour.2012.11.105

Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A

Vesborg, 2015, J. Phys. Chem. Lett., 6, 951, 10.1021/acs.jpclett.5b00306

Gür, 2014, J. Phys. Chem. C, 118, 21301, 10.1021/jp500966u

Pickrahn, 2012, Adv. Energy Mater., 2, 1269, 10.1002/aenm.201200230

Lei, 2013, Nano Lett., 13, 4182, 10.1021/nl401833p

Jiang, 2010, Chem. Mater., 22, 3024, 10.1021/cm902904u

She, 2017, Science, 355, 1

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Ni, 2007, Int. J. Hydrogen Energy, 32, 4648, 10.1016/j.ijhydene.2007.08.005

Iwahara, 2004, Solid State Ionics, 168, 299, 10.1016/j.ssi.2003.03.001

Alexander, 2011, J. Electrochem. Soc., 158, B505, 10.1149/1.3560475

Lee, 2011, Solid State Ionics, 192, 607, 10.1016/j.ssi.2010.05.034

T. M. Gür , B.Alexander and R. E.Mitchell , Steam-Carbon Fuel Cell for Simultaneous Production of Hydrogen and Electric Power, invited talk # 121 presented at the 243rd American Chemical Society Annual Meeting, San, San Diego, CA, 2012

Wang, 2007, Top. Catal., 46, 380, 10.1007/s11244-007-9005-8

van der Ham, 2014, Chem. Soc. Rev., 43, 5183, 10.1039/C4CS00085D

Köleli, 2010, J. Electroanal. Chem., 638, 119, 10.1016/j.jelechem.2009.10.010

Kordali, 2000, Chem. Commun., 1673, 10.1039/b004885m

Lan, 2013, Sci. Rep., 3, 1145, 10.1038/srep01145

Marnellos, 1998, Science, 282, 98, 10.1126/science.282.5386.98

Marnellos, 2000, J. Catal., 193, 80, 10.1006/jcat.2000.2877

Kyriakou, 2017, Catal. Today, 286, 2, 10.1016/j.cattod.2016.06.014

Kishira, 2017, Int. J. Hydrogen Energy, 42, 26843, 10.1016/j.ijhydene.2017.09.052

Vasileiou, 2015, Solid State Ionics, 275, 110, 10.1016/j.ssi.2015.01.002

Vasileiou, 2015, Top. Catal., 58, 1193, 10.1007/s11244-015-0491-9

Licht, 2014, Science, 345, 637, 10.1126/science.1254234

Bicer, 2017, J. Electrochem. Soc., 164, H5036, 10.1149/2.0091708jes

Mukherjee, 2018, Nano Energy, 48, 217, 10.1016/j.nanoen.2018.03.059

Back, 2016, Phys. Chem. Chem. Phys., 18, 9161, 10.1039/C5CP07363D

Matanaovic, 2014, Phys. Chem. Chem. Phys., 16, 3014, 10.1039/c3cp54559h

Matanaovic, 2018, Phys. Chem. Chem. Phys., 20, 14679, 10.1039/C8CP01643G

Zhao, 2018, Phys. Chem. Chem. Phys., 20, 9248, 10.1039/C7CP08626A

Montoya, 2015, ChemSusChem, 8, 2180, 10.1002/cssc.201500322

Diesselkamp, 2008, Energy Fuels, 22, 2771, 10.1021/ef800050t

Hasegawa, 2005, Electrochem. Solid-State Lett., 8, A119, 10.1149/1.1849112

Fukuzumi, 2012, Electrochim. Acta, 82, 493, 10.1016/j.electacta.2012.03.132

Yamada, 2010, Chem. Commun., 46, 7334, 10.1039/c0cc01797c

Sanli, 2011, Int. J. Hydrogen Energy, 36, 865

An, 2015, Sci. Bull., 60, 55, 10.1007/s11434-014-0694-7

Hahn, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 5918, 10.1073/pnas.1618935114

Kotrlever, 2015, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559

Peterson, 2012, J. Phys. Chem. Lett., 3, 251, 10.1021/jz201461p

Gür, 1983, Science, 219, 967, 10.1126/science.219.4587.967

Li, 2013, Int. J. Hydrogen Energy, 38, 11104, 10.1016/j.ijhydene.2013.01.008

Jensen, 2007, Int. J. Hydrogen Energy, 32, 3253, 10.1016/j.ijhydene.2007.04.042

Ebbesen, 2012, J. Electrochem. Soc., 159, F482, 10.1149/2.076208jes

Jahangiri, 2014, Catal. Sci. Technol., 4, 2210, 10.1039/C4CY00327F

Kumar, 2012, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759

Roy, 2010, ACS Nano, 4, 1259, 10.1021/nn9015423

Styring, 2012, Faraday Discuss., 155, 357, 10.1039/C1FD00113B

Chueh, 2010, Science, 330, 1797, 10.1126/science.1197834

Kondratenko, 2013, Energy Environ. Sci., 6, 3112, 10.1039/c3ee41272e

Greenblatt, 2018, Joule, 2, 381, 10.1016/j.joule.2018.01.014

Y. Hori , Electrochemical CO2 reduction on metal electrodes , in Modern Aspects of Electrochemistry , ed. C. G. Vayenas , R.E. White and M.E. Gamboa-Aldeco , Springer , New York , 2008 , 42 , pp. 89–189

Kiehnel, 2017, J. Am. Chem. Soc., 139, 7217, 10.1021/jacs.7b00369

Wang, 2017, Angew. Chem., 129, 7955, 10.1002/ange.201703720

Diercks, 2018, Nat. Mater., 17, 301, 10.1038/s41563-018-0033-5

Gür, 1991, J. Catal., 129, 216, 10.1016/0021-9517(91)90025-Y

Graves, 2011, Renewable Sustainable Energy Rev., 15, 1, 10.1016/j.rser.2010.07.014

Ebbesen, 2009, J. Power Sources, 193, 349, 10.1016/j.jpowsour.2009.02.093

Sebastian, 2012, Renewable Sustainable Energy Rev., 16, 6803, 10.1016/j.rser.2012.08.008

Mousavi, 2017, Renewable Sustainable Energy Rev., 67, 477, 10.1016/j.rser.2016.09.060

Arani, 2017, Renewable Sustainable Energy Rev., 69, 9, 10.1016/j.rser.2016.11.166

Bolund, 2007, Renewable Sustainable Energy Rev., 11, 235, 10.1016/j.rser.2005.01.004

Cimuca, 2010, IEEE Trans. Energy Convers., 25, 526, 10.1109/TEC.2010.2045925

Strasik, 2010, Supercond. Sci. Technol., 23, 034021, 10.1088/0953-2048/23/3/034021

Vosburgh, 1978, J. Energy, 2, 106, 10.2514/3.62370

Budt, 2016, Appl. Energy, 170, 250, 10.1016/j.apenergy.2016.02.108

Venkataramani, 2016, Renewable Sustainable Energy Rev., 62, 895, 10.1016/j.rser.2016.05.002

Lund, 2009, Energy Convers. Manage., 50, 1172, 10.1016/j.enconman.2009.01.032

Bagdanavicius, 2014, Energy Convers. Manage., 77, 432, 10.1016/j.enconman.2013.09.063

Hydropower, Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, issue 3/5, International Renewable Energy Agency (IRENA), June 2012

I.E.A. Technology Roadmap: Hydropower © OECD/IEA; 2012, https://www.iea.org/publications/freepublications/publication/2012_Hydropower_Roadmap.pdf

International Renewable Energy Agency, Renewable Energy Technologies: Cost Analysis Series, Volume 1: Power Sector, issue 3/5, Hydropower (June 2012). http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf

Rehman, 2015, Renewable Sustainable Energy Rev., 44, 586, 10.1016/j.rser.2014.12.040

Barbour, 2016, Renewable Sustainable Energy Rev., 61, 421, 10.1016/j.rser.2016.04.019

Perez-Diaz, 2015, Renewable Sustainable Energy Rev., 44, 767, 10.1016/j.rser.2015.01.029

Ardizzon, 2014, Renewable Sustainable Energy Rev., 31, 746, 10.1016/j.rser.2013.12.043

Deane, 2010, Renewable Sustainable Energy Rev., 14, 1293, 10.1016/j.rser.2009.11.015

International Energy Agency, Energy Technology Perspectives 2015, www.iea.org/newsroomandevents/graphics/2015-06-30-installed-global-capacity-for-grid-connected-storage.html

Hadjipaschalis, 2009, Renewable Sustainable Energy Rev., 13, 1513, 10.1016/j.rser.2008.09.028

Kaldellis, 2010, Appl. Energy, 87, 2427, 10.1016/j.apenergy.2010.02.016

Luo, 2015, Appl. Energy, 137, 511, 10.1016/j.apenergy.2014.09.081

Agyenim, 2010, Renewable Sustainable Energy Rev., 14, 615, 10.1016/j.rser.2009.10.015

Sharma, 2009, Renewable Sustainable Energy Rev., 13, 318, 10.1016/j.rser.2007.10.005

Zalba, 2003, Appl. Therm. Eng., 23, 251, 10.1016/S1359-4311(02)00192-8

Hasnain, 1998, Energy Convers. Manage., 39, 1127, 10.1016/S0196-8904(98)00025-9

Liu, 2012, Renewable Sustainable Energy Rev., 16, 2118, 10.1016/j.rser.2012.01.020

R. G. Reddy , Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation, DOE-Solar Energy Technologies Program review, Oct 6, 2012 see http://www1.eere.energy.gov/solar/sunshot/pdfs/csp_review_meeting_042413_reddy.pdf

R. A. Huggins , Energy Storage: Fundamentals, Materials and Applications , Springer , 2nd edn, 2016

Economic Benefits of Increasing Electric Grid Resilience to Weather Outages, Executive Office of the President, The White House, August 2013, https://www.energy.gov/sites/prod/files/2013/08/f2/Grid%20Resiliency%20Report_FINAL.pdf

K. Eber and D.Corbus , Hawaii Solar Integration Study: Executive Summary, US National Renewable Energy Laboratory (NREL), NREL/TP-5500-57215, 2013, see https://www.nrel.gov/docs/fy13osti/57215.pdf

National Assessment of Energy Storage for Grid Balancing and Arbitrage, Phase II: WECC, ERCOT, EIC, Vol. 1: Technical Analysis, (Sept. 2013), PNNL-21388 Phase II/, https://energyenvironment.pnnl.gov/pdf/National_Assessment_Storage_PHASE_II_vol_1_final.pdf , accessed April 3, 2018

Chu, 2012, Nature, 488, 294, 10.1038/nature11475

C. Curry , Lithium-ion Battery Costs and Market, July 5, 2017, Bloomberg New Energy Finance, https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.pdf , accessed April 6, 2018

Technology Roadmap: Energy Storage, International Energy Agency 2014 report (OECD/IEA, 2014), available at https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf , accessed July 9, 2018

Jacobson, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 15060, 10.1073/pnas.1510028112

Jacobson, 2017, Joule, 1, 108, 10.1016/j.joule.2017.07.005

Clack, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 6722, 10.1073/pnas.1610381114

World Energy Resources: E-Storage 2016, World Energy Council, available at https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_E-storage_2016.pdf , accessed July 6, 2018

Yin, 2017, ChemCatChem, 9, 1545, 10.1002/cctc.201600646

Larcher, 2015, Nat. Chem., 7, 19, 10.1038/nchem.2085

Whittingham, 2018, Acc. Chem. Res., 51, 258, 10.1021/acs.accounts.7b00527