DOE-EIA International Energy Outlook 2017 (Sept. 2017) report No: DOE/EIA-0484(2017) https://www.eia.gov/outlooks/ieo/ieo_tables.php , accessed Nov. 2, 2017
World Energy Outlook 2015, International Energy Agency, London, Nov. 10, 2015, see http://www.worldenergyoutlook.org/weo2015/
Global Greenhouse Gas Emissions Data (2017), US Environmental Protection Agency, https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data , accessed Nov 10, 2017
Gür, 2017, J. Electrochem. Soc., 164, F1587, 10.1149/2.0511714jes
Gür, 2013, Chem. Rev., 113, 6179, 10.1021/cr400072b
Gür, 2016, Prog. Energy Combust. Sci., 54, 1, 10.1016/j.pecs.2015.10.004
Next Generation Wind and Solar Power: From cost to value. IEA 2016 report, https://www.iea.org/publications/freepublications/publication/Next_Generation_Windand_Solar_PowerFrom_Cost_to_ValueFull_Report.pdf
www.independent.co.uk/environment/solar-and-wind-power-cheaper-than-fossil-fuels-for-the-first-time-a7509251.html , accessed Nov 10, 2017
International Energy Agency, World Energy Outlook 2016 (Nov. 2016), also see http://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html
www.bloomberg.com/news/articles/2016-12-15/world-energy-hits-a-turning-point-solar-that-s-cheaper-thanwind , accessed Nov 10, 2017
DOE-EIA International Energy Outlook 2017 (Sept. 2017) report No: DOE/EIA-0484(2017) https://www.eia.gov/outlooks/ieo/ieo_tables.php , accessed Nov. 2, 2017
US-DOE Energy Information Administration, Today in Energy, https://www.eia.gov/todayinenergy/detail.php?id=31372 , accessed Nov. 19, 2017
Bloomberg Technology News, July 31, 2017, https://www.bloomberg.com/news/articles/2017-07-31/alphabet-wants-to-fix-renewable-energy-s-storage-problem-with-salt
www.latimes.com/projects/la-fi-electricity-solar/
DOE Global Energy Storage Database, Office of Electricity Delivery and Energy Reliability, http://www.energystorageexchange.org/projects/data_visualization , accessed Nov. 9, 2017
Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency (IRENA 2017), available at http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf , accessed July 6, 2018
Grid Energy Storage, US Department of Energy, Dec. 2013, http://www.energy.gov/sites/prod/files/2014/09/f18/Grid%20Energy%20Storage%20December%202013.pdf
Energy Technology Perspectives 2015, International Energy Agency, www.iea.org/newsroomandevents/graphics/2015-06-30-installed-global-capacity-for-grid-connected-storage.html
Dunn, 2011, Science, 334, 928, 10.1126/science.1212741
Electrical Energy Storage Technology Options report #1020676, Dec. 2010, Electric Power Research Institute, Palo Alto, CA
Abraham, 2015, J. Phys. Chem. Lett., 6, 830, 10.1021/jz5026273
Ibrahim, 2008, Renewable Sustainable Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023
Liu, 2010, Adv. Energy Mater., 22, E28, 10.1002/adma.200903328
Hadjipaschalis, 2009, Renewable Sustainable Energy Rev., 13, 1513, 10.1016/j.rser.2008.09.028
Hall, 2008, Energy Policy, 36, 4352, 10.1016/j.enpol.2008.09.037
Radousky, 2012, Nanotechnology, 23, 502001, 10.1088/0957-4484/23/50/502001
Evans, 2012, Renewable Sustainable Energy Rev., 16, 4144, 10.1016/j.rser.2012.03.048
Luo, 2015, Appl. Energy, 137, 511, 10.1016/j.apenergy.2014.09.081
Wachsman, 2012, Energy Environ. Sci., 5, 5498, 10.1039/C1EE02445K
Arico, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368
Armand, 2008, Nature, 451, 652, 10.1038/451652a
Yang, 2011, Chem. Rev., 111, 3577, 10.1021/cr100290v
Whittingham, 2008, MRS Bull., 33, 411, 10.1557/mrs2008.82
Barnhart, 2013, Energy Environ. Sci., 6, 1083, 10.1039/c3ee24040a
Rand, 2011, J. Solid State Electrochem., 15, 1579, 10.1007/s10008-011-1410-z
Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k
Groger, 2015, J. Electrochem. Soc., 162, A2605, 10.1149/2.0211514jes
Muench, 2016, Chem. Rev., 116, 9438, 10.1021/acs.chemrev.6b00070
Tarascon, 2001, Nature, 414, 359, 10.1038/35104644
Bruce, 2008, Solid State Ionics, 179, 752, 10.1016/j.ssi.2008.01.095
Lithium Ion Batteries: Fundamentals and Performance , ed. W. Wakihara and O. Yamamoto , Kodansha Ltd. Tokyo (Japan), Wiley-VCH Verlag GmbH , Weinheim (Germany), Tokyo , 1998
Kang, 2009, Nature, 458, 190, 10.1038/nature07853
Choi, 2012, Angew. Chem., Int. Ed., 51, 9994, 10.1002/anie.201201429
Zu, 2011, Energy Environ. Sci., 4, 2614, 10.1039/c0ee00777c
Whittingham, 2004, Chem. Rev., 104, 4271, 10.1021/cr020731c
Whittingham, 2014, Chem. Rev., 114, 11414, 10.1021/cr5003003
Ellis, 2010, Chem. Mater., 22, 691, 10.1021/cm902696j
Goodenough, 2010, Chem. Mater., 22, 587, 10.1021/cm901452z
Scrosati, 1992, J. Electrochem. Soc., 139, 2776, 10.1149/1.2068978
Goodenough, 2013, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438
Scrosati, 2010, J. Power Sources, 195, 2419, 10.1016/j.jpowsour.2009.11.048
Etacheri, 2011, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b
Choi, 2016, Nat. Rev. Mater., 1, 1, 10.1038/natrevmats.2016.13
Xu, 2004, Chem. Rev., 104, 4303, 10.1021/cr030203g
Armand, 2009, Nat. Mater., 8, 621, 10.1038/nmat2448
Angell, 2012, Faraday Discuss., 154, 9, 10.1039/C1FD00112D
Croce, 2000, Solid State Ionics, 135, 47, 10.1016/S0167-2738(00)00329-5
Wright, 2002, MRS Bull., 27, 597, 10.1557/mrs2002.194
Thangadurai, 2014, Chem. Soc. Rev., 43, 4714, 10.1039/c4cs00020j
Li, 1994, Science, 264, 1115, 10.1126/science.264.5162.1115
Yang, 2017, Joule, 1, 122, 10.1016/j.joule.2017.08.009
Obrovac, 2014, Chem. Rev., 114, 11444, 10.1021/cr500207g
Kasavajjula, 2007, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084
Cheng, 2017, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Wen, 1979, J. Electrochem. Soc., 126, 2258, 10.1149/1.2128939
Weppner, 1977, J. Electrochem. Soc., 124, 1569, 10.1149/1.2133112
Weppner, 1977, J. Solid State Chem., 22, 297, 10.1016/0022-4596(77)90006-8
Boukamp, 1981, J. Electrochem. Soc., 128, 725, 10.1149/1.2127495
Chan, 2008, Nat. Nanothechnol., 3, 31, 10.1038/nnano.2007.411
Wen, 1981, J. Electrochem. Soc., 128, 1181, 10.1149/1.2127590
Trevey, 2013, Nanotechnology, 24, 424001, 10.1088/0957-4484/24/42/424001
Whittingham, 1976, Science, 192, 1126, 10.1126/science.192.4244.1126
Son, 2015, Nat. Commun., 6, 7393, 10.1038/ncomms8393
Chan, 2008, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411
Wu, 2012, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004
Chiang, 2010, Science, 330, 1485, 10.1126/science.1198591
Jiang, 2017, J. Mater. Sci., 52, 3670, 10.1007/s10853-016-0599-8
Goriparti, 2014, J. Power Sources, 257, 421, 10.1016/j.jpowsour.2013.11.103
Kaskhedikar, 2009, Adv. Mater., 21, 2664, 10.1002/adma.200901079
Liu, 2011, Adv. Mater., 23, 4679, 10.1002/adma.201102421
Zheng, 2014, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152
McDowell, 2011, Nano Lett., 11, 4018, 10.1021/nl202630n
Wu, 2003, J. Power Sources, 114, 228, 10.1016/S0378-7753(02)00596-7
Thackeray, 2002, Nat. Mater., 1, 81, 10.1038/nmat736
Tukamoto, 1997, J. Electrochem. Soc., 144, 3164, 10.1149/1.1837976
Chen, 2001, J. Electrochem. Soc., 148, A102, 10.1149/1.1344523
Padhi, 1997, J. Electrochem. Soc., 144, 1188, 10.1149/1.1837571
Ravet, 2001, J. Power Sources, 97–98, 503, 10.1016/S0378-7753(01)00727-3
Wang, 2006, Angew. Chem., 45, 8197, 10.1002/anie.200602891
Chung, 2002, Nat. Mater., 1, 123, 10.1038/nmat732
Tarascon, 2010, Chem. Mater., 22, 724, 10.1021/cm9030478
Amatucci, 2002, J. Electrochem. Soc., 149, K31, 10.1149/1.1516778
Gallagher, 2014, Energy Environ. Sci., 7, 1555, 10.1039/c3ee43870h
Radin, 2017, Adv. Energy Mater., 7, 1602888, 10.1002/aenm.201602888
Poizot, 2000, Nature, 407, 496, 10.1038/35035045
Badway, 2003, J. Electrochem. Soc., 150, A1209, 10.1149/1.1596162
Yamakawa, 2009, J. Am. Chem. Soc., 131, 10525, 10.1021/ja902639w
Badway, 2003, J. Electrochem. Soc., 150, A1318, 10.1149/1.1602454
Wang, 2011, J. Am. Chem. Soc., 133, 18828, 10.1021/ja206268a
Peled, 1979, J. Electrochem. Soc., 126, 2047, 10.1149/1.2128859
Steinruck, 2018, Energy Environ. Sci., 11, 594, 10.1039/C7EE02724A
Aurbach, 2007, J. Power Sources, 165, 491, 10.1016/j.jpowsour.2006.10.025
Xu, 2014, Chem. Rev., 114, 11503, 10.1021/cr500003w
Chen, 2016, Mater. Horiz., 3, 487, 10.1039/C6MH00218H
Huggins, 2013, J. Electrochem. Soc., 160, A3001, 10.1149/2.001305jes
Tao, 2017, ACS Appl. Mater. Interfaces, 9, 7003, 10.1021/acsami.6b13859
Ishikawa, 2005, J. Power Sources, 146, 199, 10.1016/j.jpowsour.2005.03.007
Qian, 2015, Nano Energy, 15, 135, 10.1016/j.nanoen.2015.04.009
Zhang, 2017, Chem. Soc. Rev., 46, 797, 10.1039/C6CS00491A
Miller III, 2016, Acc. Chem. Res., 50, 590, 10.1021/acs.accounts.6b00568
Liu, 2015, Nano Lett., 15, 2740, 10.1021/acs.nanolett.5b00600
Fergus, 2010, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076
Kim, 2015, J. Power Sources, 282, 299, 10.1016/j.jpowsour.2015.02.054
Knauth, 2009, Solid State Ionics, 180, 911, 10.1016/j.ssi.2009.03.022
Manthiram, 2017, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103
Osada, 2016, Angew. Chem., Int. Ed., 55, 500, 10.1002/anie.201504971
Watanabe, 2017, Chem. Rev., 117, 7190, 10.1021/acs.chemrev.6b00504
Zhang, 2006, J. Phys. Chem. Ref. Data, 35, 1475, 10.1063/1.2204959
Pasta, 2012, Nat. Commun., 3, 1149, 10.1038/ncomms2139
Liu, 1991, J. Electrochem. Soc., 138, 1891, 10.1149/1.2085895
Tarascon, 1996, Solid State Ionics, 86–88, 49, 10.1016/0167-2738(96)00330-X
Blake, 2017, Adv. Energy Mater., 7, 1602920, 10.1002/aenm.201602920
Janek, 2016, Nat. Energy, 1, 16141, 10.1038/nenergy.2016.141
Aldalur, 2018, J. Power Sources, 383, 144, 10.1016/j.jpowsour.2018.02.066
Kasemchainan, 2018, Johnson Matthey Technol. Rev., 62, 177, 10.1595/205651318X696747
Kamaya, 2011, Nat. Mater., 10, 682, 10.1038/nmat3066
Kato, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2016.30
Miara, 2015, Chem. Mater., 27, 4040, 10.1021/acs.chemmater.5b01023
Zhao, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 11069, 10.1073/pnas.1708489114
Liu, 2015, Nano Lett., 15, 2740, 10.1021/acs.nanolett.5b00600
Song, 2013, Nano Lett., 13, 5891, 10.1021/nl402793z
Manthiram, 2014, Chem. Rev., 114, 11751, 10.1021/cr500062v
Manthiram, 2013, Acc. Chem. Res., 46, 1125, 10.1021/ar300179v
Song, 2013, Nanoscale, 5, 2186, 10.1039/c2nr33044j
Zheng, 2011, Nano Lett., 11, 4462, 10.1021/nl2027684
Wild, 2015, Energy Environ. Sci., 8, 3477, 10.1039/C5EE01388G
Eroglu, 2015, J. Electrochem. Soc., 162, A982, 10.1149/2.0611506jes
Yabuuchi, 2014, Chem. Rev., 114, 11636, 10.1021/cr500192f
Muldoon, 2014, Chem. Rev., 114, 11683, 10.1021/cr500049y
Kubota, 2015, J. Electrochem. Soc., 162, A2538, 10.1149/2.0151514jes
Eftekhari, 2016, ACS Appl. Mater. Interfaces, 9, 4404, 10.1021/acsami.6b07989
Pan, 2013, Energy Environ. Sci., 6, 2338, 10.1039/c3ee40847g
Slater, 2013, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691
Lipson, 2015, Chem. Mater., 27, 8442, 10.1021/acs.chemmater.5b04027
Kubota, 2018, Chem. Rec., 18, 1, 10.1002/tcr.201700057
Dahbi, 2014, Phys. Chem. Chem. Phys., 16, 15007, 10.1039/c4cp00826j
Stevens, 2000, J. Electrochem. Soc., 147, 1271, 10.1149/1.1393348
Chen, 2008, ChemSusChem, 1, 348, 10.1002/cssc.200700161
Lee, 2017, Nat. Energy, 2, 861, 10.1038/s41560-017-0014-y
Barpanda, 2014, Nat. Commun., 5, 4358, 10.1038/ncomms5358
Zhou, 2017, ACS Cent. Sci., 3, 52, 10.1021/acscentsci.6b00321
Wang, 2013, Angew. Chem., Int. Ed., 52, 1964, 10.1002/anie.201206854
Wessells, 2011, Nano Lett., 11, 5421, 10.1021/nl203193q
Eftekhari, 2004, J. Power Sources, 126, 221, 10.1016/j.jpowsour.2003.08.007
Pramudita, 2017, Adv. Energy Mater., 7, 1602911, 10.1002/aenm.201602911
Canepa, 2017, Nat. Commun., 8, 1759, 10.1038/s41467-017-01772-1
Li, 2002, J. Power Sources, 110, 1, 10.1016/S0378-7753(01)01014-X
Jayaprakash, 2011, Chem. Commun., 47, 12610, 10.1039/c1cc15779e
Lin, 2015, Nature, 520, 324, 10.1038/nature14340
Engstrom, 1981, Solid State Ionics, 2, 265, 10.1016/0167-2738(81)90027-8
Lu, 2010, J. Power Sources, 195, 2431, 10.1016/j.jpowsour.2009.11.120
Hueso, 2013, Energy Environ. Sci., 6, 734, 10.1039/c3ee24086j
Ellis, 2012, Curr. Opin. Solid State Mater. Sci., 16, 168, 10.1016/j.cossms.2012.04.002
Lu, 2013, Energy Environ. Sci., 6, 299, 10.1039/C2EE23606K
Lu, 2014, Nat. Commun., 5, 4578, 10.1038/ncomms5578
Wang, 2007, Electrochem. Commun., 9, 31, 10.1016/j.elecom.2006.08.029
Qiang, 2017, Nano Energy, 32, 59, 10.1016/j.nanoen.2016.12.018
Wei, 2016, Nat. Commun., 7, 11722, 10.1038/ncomms11722
Goodenough, 1976, Mater. Res. Bull., 11, 203, 10.1016/0025-5408(76)90077-5
Bohnke, 1999, Solid State Ionics, 122, 127, 10.1016/S0167-2738(99)00062-4
Schmid, 1982, Solid State Ionics, 6, 57, 10.1016/0167-2738(82)90096-0
Blurton, 1979, J. Power Sources, 4, 263, 10.1016/0378-7753(79)80001-4
Zhang, 2010, J. Power Sources, 195, 1202, 10.1016/j.jpowsour.2009.08.063
Girishkumar, 2010, J. Phys. Chem. Lett., 1, 2193, 10.1021/jz1005384
Li, 2014, Chem. Soc. Rev., 43, 5257, 10.1039/C4CS00015C
Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010
Rudd, 1994, J. Power Sources, 47, 329, 10.1016/0378-7753(94)87012-8
Wessels, 2011, J. Electrochem. Soc., 159, A1, 10.1149/2.060202jes
Zhang, 2016, Green Energy Environ., 1, 4, 10.1016/j.gee.2016.04.004
Cheng, 2012, Chem. Soc. Rev., 41, 2172, 10.1039/c1cs15228a
K. Kinoshita , Electrochemical oxygen technology , J. Wiley , New York , 1992
Lu, 2010, J. Am. Chem. Soc., 132, 12170, 10.1021/ja1036572
Mao, 2003, Electrochim. Acta, 48, 1015, 10.1016/S0013-4686(02)00815-0
Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v
Ng, 2014, Energy Environ. Sci., 7, 2017, 10.1039/c3ee44059a
Norskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j
Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069
Zheng, 2008, J. Electrochem. Soc., 155, A432, 10.1149/1.2901961
Luntz, 2014, Chem. Rev., 114, 11721, 10.1021/cr500054y
Ogasawara, 2006, J. Am. Chem. Soc., 128, 1390, 10.1021/ja056811q
Kraytsberg, 2011, J. Power Sources, 196, 886, 10.1016/j.jpowsour.2010.09.031
Christensen, 2012, J. Electrochem. Soc., 159, R1, 10.1149/2.086202jes
Grande, 2015, Adv. Mater., 27, 784, 10.1002/adma.201403064
Aurbach, 2016, Nat. Energy, 1, 161281, 10.1038/nenergy.2016.128
Balaish, 2014, Phys. Chem. Chem. Phys., 16, 2801, 10.1039/c3cp54165g
Lu, 2013, Energy Environ. Sci., 6, 750, 10.1039/c3ee23966g
Debart, 2007, J. Power Sources, 174, 1177, 10.1016/j.jpowsour.2007.06.180
Ma, 2015, Energy Environ. Sci., 8, 2144, 10.1039/C5EE00838G
Sun, 2017, Sci. Rep., 7, 41217, 10.1038/srep41217
Yi, 2017, Energy Environ. Sci., 10, 860, 10.1039/C6EE03499C
Xu, 2010, J. Electrochem. Soc., 157, A219, 10.1149/1.3269928
Kuboki, 2005, J. Power Sources, 146, 766, 10.1016/j.jpowsour.2005.03.082
McCloskey, 2011, J. Am. Chem. Soc., 133, 18038, 10.1021/ja207229n
Wandt, 2016, Angew. Chem., 128, 7006, 10.1002/ange.201602142
Mahne, 2018, Angew. Chem., Int. Ed., 57, 5529, 10.1002/anie.201802277
Mahne, 2017, Nat. Energy, 2, 17036, 10.1038/nenergy.2017.36
Luntz, 2017, Nat. Energy, 2, 17056, 10.1038/nenergy.2017.56
Johnson, 2014, Nat. Chem., 6, 1091, 10.1038/nchem.2101
Gutmann, 1976, Coord. Chem. Rev., 18, 225, 10.1016/S0010-8545(00)82045-7
Chen, 2013, Nat. Chem., 5, 489, 10.1038/nchem.1646
Peng, 2012, Science, 337, 563, 10.1126/science.1223985
McCloskey, 2012, J. Phys. Chem. Lett., 3, 997, 10.1021/jz300243r
Aetukuri, 2014, Nat. Chem., 7, 50, 10.1038/nchem.2132
Elia, 2014, Nano Lett., 14, 6572, 10.1021/nl5031985
Jung, 2010, Nat. Chem., 4, 579, 10.1038/nchem.1376
Gu, 2017, J. Mater. Chem. A, 5, 7651, 10.1039/C7TA01693J
Pan, 2018, Adv. Sci., 1700691, 10.1002/advs.201700691
Xu, 2015, Angew. Chem., Int. Ed., 54, 15390, 10.1002/anie.201508848
Fu, 2016, Energy Environ. Sci., 9, 663, 10.1039/C5EE03404C
Ma, 2007, J. Mater. Chem., 17, 684, 10.1039/B609783A
Lee, 2006, J. Power Sources, 160, 1436, 10.1016/j.jpowsour.2006.02.019
Banik, 2013, J. Electrochem. Soc., 160, D519, 10.1149/2.040311jes
Ein-Eli, 2003, J. Power Sources, 114, 330, 10.1016/S0378-7753(02)00598-0
Lee, 2013, J. Power Sources, 227, 177, 10.1016/j.jpowsour.2012.11.046
Fu, 2017, Nano Energy, 39, 77, 10.1016/j.nanoen.2017.06.029
Lee, 2014, Adv. Energy Mater., 4, 1301389, 10.1002/aenm.201301389
Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812
Perry, 2016, J. Electrochem. Soc., 163, A5064, 10.1149/2.0101601jes
Wang, 2013, Adv. Funct. Mater., 23, 970, 10.1002/adfm.201200694
Weber, 2011, J. Appl. Electrochem., 41, 1137, 10.1007/s10800-011-0348-2
Skyllas-Kazacos, 2011, J. Electrochem. Soc., 158, R55, 10.1149/1.3599565
Alotto, 2014, Renewable Sustainable Energy Rev., 29, 325, 10.1016/j.rser.2013.08.001
Ye, 2018, J. Electrochem. Energy Convers. Storage, 15, 010801, 10.1115/1.4037248
JES Focus Issue on Redox Flow Batteries – Reversible Fuel Cells, J. Electrochem. Soc. , 2016 , 163 (1)
Wei, 2017, ACS Energy Lett., 2, 2187, 10.1021/acsenergylett.7b00650
Lin, 2015, Science, 349, 1529, 10.1126/science.aab3033
Chen, 2016, J. Electrochem. Soc., 163, A5010, 10.1149/2.0021601jes
Darling, 2014, Energy Environ. Sci., 7, 3459, 10.1039/C4EE02158D
Grid -Scale Rampable Intermittent Dispatchable Storage (GRIDS), US Department of Energy, Advanced Research Projects Agency – Energy (ARPA-E) Funding Opportunity Announcement DE-FOA-0000290 CFDA# 81,135, Washington D.C., March 2, 2010, https://arpa-e-foa.energy.gov/Default.aspx?Archive=1#FoaId85e239bb-8908-4d2c-ab10-dd02d85e7d78 , accessed April 6, 2018
Ding, 2013, J. Phys. Chem. Lett., 4, 1281, 10.1021/jz4001032
Parasuraman, 2013, Electrochim. Acta, 101, 27, 10.1016/j.electacta.2012.09.067
Cunha, 2015, Int. J. Energy Res., 39, 889, 10.1002/er.3260
Kear, 2012, Int. J. Energy Res., 36, 1105, 10.1002/er.1863
Shinkle, 2011, J. Appl. Electrochem., 41, 1191, 10.1007/s10800-011-0314-z
Suresh, 2014, RSC Adv., 4, 37947, 10.1039/C4RA05946H
Biswas, 2017, Energy Environ. Sci., 10, 114, 10.1039/C6EE02782B
Wang, 2012, Chem. Soc. Rev., 41, 797, 10.1039/C1CS15060J
Gonzalez, 2016, Renewable Sustainable Energy Rev., 58, 1189, 10.1016/j.rser.2015.12.249
Zhang, 2009, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j
Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297
Burke, 2007, Electrochim. Acta, 53, 1083, 10.1016/j.electacta.2007.01.011
Zhi, 2013, Nanoscale, 5, 72, 10.1039/C2NR32040A
Zhong, 2015, Chem. Soc. Rev., 44, 7484, 10.1039/C5CS00303B
Burke, 2000, J. Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7
Simon, 2014, Science, 343, 1210, 10.1126/science.1249625
Burke, 2007, Proc. IEEE, 95, 806, 10.1109/JPROC.2007.892490
B. E. Conway , Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , Kluwer Academics/Plenum Publisher , New York , 1999
Ye, 2018, Joule, 2, 245, 10.1016/j.joule.2017.11.011
Huang, 2012, Small, 8, 1805, 10.1002/smll.201102635
Conway, 2002, J. Power Sources, 105, 169, 10.1016/S0378-7753(01)00936-3
Mastragostino, 2007, J. Power Sources, 174, 89, 10.1016/j.jpowsour.2007.06.009
Amatucci, 2001, J. Electrochem. Soc., 148, A930, 10.1149/1.1383553
Lin, 2011, J. Power Sources, 196, 851, 10.1016/j.jpowsour.2010.07.066
Augustyn, 2013, Nat. Mater., 12, 518, 10.1038/nmat3601
Stambouli, 2002, Renewable Sustainable Energy Rev., 6, 433, 10.1016/S1364-0321(02)00014-X
Lo Faro, 2012, Fuel, 102, 554, 10.1016/j.fuel.2012.07.031
Shao, 2005, Nature, 435, 795, 10.1038/nature03673
Zhan, 2005, Solid State Ionics, 176, 871, 10.1016/j.ssi.2004.12.005
Park, 2000, Appl. Catal., A, 200, 55, 10.1016/S0926-860X(00)00650-5
Costa-Nunes, 2003, J. Electrochem. Soc., 150, A858, 10.1149/1.1574807
Murray, 2002, J. Electrochem. Soc., 149, A1127, 10.1149/1.1496484
Liu, 2012, Nano Energy, 1, 448, 10.1016/j.nanoen.2012.02.006
Kim, 2001, J. Electrochem. Soc., 148, A693, 10.1149/1.1374216
Gür, 1992, J. Electrochem. Soc., 132, L95, 10.1149/1.2069025
Gür, 2010, J. Electrochem. Soc., 157, B571, 10.1149/1.3357050
Lee, 2008, Electrochem. Solid-State Lett., 11, B20, 10.1149/1.2821136
Alexander, 2012, J. Electrochem. Soc., 159, B347, 10.1149/2.096203jes
Gür, 2010, J. Power Sources, 195, 1085, 10.1016/j.jpowsour.2009.08.098
Homel, 2010, J. Power Sources, 195, 6367, 10.1016/j.jpowsour.2010.04.020
Wang, 2017, Renewable Sustainable Energy Rev., 75, 775, 10.1016/j.rser.2016.11.054
Pettersson, 2006, J. Power Sources, 157, 28, 10.1016/j.jpowsour.2006.01.059
Dihrab, 2009, Renewable Sustainable Energy Rev., 13, 1663, 10.1016/j.rser.2008.09.029
Sadhasivam, 2017, Int. J. Hydrogen Energy, 42, 4415, 10.1016/j.ijhydene.2016.10.140
Gasteiger, 2005, Appl. Catal., B, 56, 9, 10.1016/j.apcatb.2004.06.021
Kong, 2012, Electrochem. Commun., 14, 63, 10.1016/j.elecom.2011.11.002
Sheng, 2010, J. Electrochem. Soc., 157, B1529, 10.1149/1.3483106
Durst, 2014, Energy Environ. Sci., 7, 2255, 10.1039/C4EE00440J
Hu, 2009, Electrochem. Commun., 11, 2212, 10.1016/j.elecom.2009.09.033
Wang, 2016, Renewable Sustainable Energy Rev., 65, 961, 10.1016/j.rser.2016.07.046
Sridhar, 2005, Electrochem. Soc., Proc., 295
Bastidas, 2006, J. Mater. Chem., 16, 1603, 10.1039/b600532b
Gomez, 2016, Renewable Sustainable Energy Rev., 61, 155, 10.1016/j.rser.2016.03.005
Ruiz-Morales, 2011, RSC Adv., 1, 1403, 10.1039/c1ra00284h
Wendel, 2016, Appl. Energy, 172, 118, 10.1016/j.apenergy.2016.03.054
Meeting the needs of the future warriors, The National Academic Press, 2004, http://www.nap.edu/openbook/0309092612/html/89.html
Eguchi, 1996, Solid State Ionics, 86–88, 1245, 10.1016/0167-2738(96)00295-0
Ebbesen, 2014, Chem. Rev., 114, 10697, 10.1021/cr5000865
Laguna-Bercero, 2012, J. Power Sources, 203, 4, 10.1016/j.jpowsour.2011.12.019
Graves, 2015, Nat. Mater., 14, 239, 10.1038/nmat4165
Hong, 2014, Int. J. Hydrogen Energy, 39, 20819, 10.1016/j.ijhydene.2014.06.114
Bi, 2014, Chem. Soc. Rev., 43, 8255, 10.1039/C4CS00194J
Shim, 2009, Chem. Mater., 21, 3290, 10.1021/cm900820p
Duan, 2015, Science, 349, 1321, 10.1126/science.aab3987
Tao, 2003, Nat. Mater., 2, 320, 10.1038/nmat871
Jensen, 2015, Energy Environ. Sci., 5, 2471, 10.1039/C5EE01485A
Zhan, 2011, Energy Environ. Sci., 4, 3951, 10.1039/c1ee01982a
Zhan, 2012, RSC Adv., 2, 4075, 10.1039/c2ra20413d
An, 2014, MRS Bull., 39, 798, 10.1557/mrs.2014.171
Macoteguy, 2013, Int. J. Hydrogen Energy, 38, 15887, 10.1016/j.ijhydene.2013.09.045
Irvine, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2015.14
Ogden, 1999, Annu. Rev. Energy Environ., 24, 227, 10.1146/annurev.energy.24.1.227
Winter, 2009, Int. J. Hydrogen Energy, 34, S1, 10.1016/j.ijhydene.2009.05.063
Barthelemy, 2017, Int. J. Hydrogen Energy, 42, 7254, 10.1016/j.ijhydene.2016.03.178
Durbin, 2013, Int. J. Hydrogen Energy, 38, 14595, 10.1016/j.ijhydene.2013.07.058
Langmi, 2014, Electrochim. Acta, 128, 368, 10.1016/j.electacta.2013.10.190
de Jonghe, 2010, ChemSusChem, 3, 1332, 10.1002/cssc.201000248
NREL Technology Brief: Analysis of current-day commercial electrolyzers, NREL/FS-840-36705, 2004, http://www.nrel.gov/docs/fy04osti/36705.pdf
Hydrogen Production Cost Analysis, National Renewable Energy Laboratory, https://www.nrel.gov/hydrogen/production-cost-analysis.html
G. Saur and C.Ainscough , US Geographic Analysis of the Cost of Hydrogen from Electrolysis, National Renewable Energy Laboratory (NREL, Technical report: NREL/TP-5600-52640, (Dec. 2011)), https://www.nrel.gov/docs/fy12osti/52640.pdf , accessed April 3, 2018
US DOE Office of Energy Efficiency & Renewable Energy (EERE), Section 3.1. Hydrogen Production, https://www.energy.gov/sites/prod/files/2015/06/f23/fcto_myrdd_production.pdf at https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 , accessed April 2, 2018
Urus, 2012, Proc. IEEE, 100, 410, 10.1109/JPROC.2011.2156750
Carmo, 2013, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151
Zeng, 2010, Prog. Energy Combust. Sci., 36, 307, 10.1016/j.pecs.2009.11.002
Marini, 2012, Electrochim. Acta, 82, 384, 10.1016/j.electacta.2012.05.011
Babic, 2017, J. Electrochem. Soc., 164, F387, 10.1149/2.1441704jes
Solar-Hydrogen Energy Systems: An Authoritative Review of Water-Splitting Systems by Solar Beam and Solar Heat: Hydrogen Production, Storage and Utilization , ed. T. Ohta , Pergamon Press , 2013
http://energy.gov/eere/fuelcells/hydrogen-production-electrolysis
Allebrod, 2013, J. Power Sources, 229, 22, 10.1016/j.jpowsour.2012.11.105
Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A
Vesborg, 2015, J. Phys. Chem. Lett., 6, 951, 10.1021/acs.jpclett.5b00306
Gür, 2014, J. Phys. Chem. C, 118, 21301, 10.1021/jp500966u
Pickrahn, 2012, Adv. Energy Mater., 2, 1269, 10.1002/aenm.201200230
Lei, 2013, Nano Lett., 13, 4182, 10.1021/nl401833p
Jiang, 2010, Chem. Mater., 22, 3024, 10.1021/cm902904u
She, 2017, Science, 355, 1
Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483
Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439
Ni, 2007, Int. J. Hydrogen Energy, 32, 4648, 10.1016/j.ijhydene.2007.08.005
Iwahara, 2004, Solid State Ionics, 168, 299, 10.1016/j.ssi.2003.03.001
Alexander, 2011, J. Electrochem. Soc., 158, B505, 10.1149/1.3560475
Lee, 2011, Solid State Ionics, 192, 607, 10.1016/j.ssi.2010.05.034
T. M. Gür , B.Alexander and R. E.Mitchell , Steam-Carbon Fuel Cell for Simultaneous Production of Hydrogen and Electric Power, invited talk # 121 presented at the 243rd American Chemical Society Annual Meeting, San, San Diego, CA, 2012
Wang, 2007, Top. Catal., 46, 380, 10.1007/s11244-007-9005-8
van der Ham, 2014, Chem. Soc. Rev., 43, 5183, 10.1039/C4CS00085D
Köleli, 2010, J. Electroanal. Chem., 638, 119, 10.1016/j.jelechem.2009.10.010
Kordali, 2000, Chem. Commun., 1673, 10.1039/b004885m
Lan, 2013, Sci. Rep., 3, 1145, 10.1038/srep01145
Marnellos, 1998, Science, 282, 98, 10.1126/science.282.5386.98
Marnellos, 2000, J. Catal., 193, 80, 10.1006/jcat.2000.2877
Kyriakou, 2017, Catal. Today, 286, 2, 10.1016/j.cattod.2016.06.014
Kishira, 2017, Int. J. Hydrogen Energy, 42, 26843, 10.1016/j.ijhydene.2017.09.052
Vasileiou, 2015, Solid State Ionics, 275, 110, 10.1016/j.ssi.2015.01.002
Vasileiou, 2015, Top. Catal., 58, 1193, 10.1007/s11244-015-0491-9
Licht, 2014, Science, 345, 637, 10.1126/science.1254234
Bicer, 2017, J. Electrochem. Soc., 164, H5036, 10.1149/2.0091708jes
Mukherjee, 2018, Nano Energy, 48, 217, 10.1016/j.nanoen.2018.03.059
Back, 2016, Phys. Chem. Chem. Phys., 18, 9161, 10.1039/C5CP07363D
Matanaovic, 2014, Phys. Chem. Chem. Phys., 16, 3014, 10.1039/c3cp54559h
Matanaovic, 2018, Phys. Chem. Chem. Phys., 20, 14679, 10.1039/C8CP01643G
Zhao, 2018, Phys. Chem. Chem. Phys., 20, 9248, 10.1039/C7CP08626A
Montoya, 2015, ChemSusChem, 8, 2180, 10.1002/cssc.201500322
Diesselkamp, 2008, Energy Fuels, 22, 2771, 10.1021/ef800050t
Hasegawa, 2005, Electrochem. Solid-State Lett., 8, A119, 10.1149/1.1849112
Fukuzumi, 2012, Electrochim. Acta, 82, 493, 10.1016/j.electacta.2012.03.132
Yamada, 2010, Chem. Commun., 46, 7334, 10.1039/c0cc01797c
Sanli, 2011, Int. J. Hydrogen Energy, 36, 865
An, 2015, Sci. Bull., 60, 55, 10.1007/s11434-014-0694-7
Hahn, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 5918, 10.1073/pnas.1618935114
Kotrlever, 2015, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559
Peterson, 2012, J. Phys. Chem. Lett., 3, 251, 10.1021/jz201461p
Gür, 1983, Science, 219, 967, 10.1126/science.219.4587.967
Li, 2013, Int. J. Hydrogen Energy, 38, 11104, 10.1016/j.ijhydene.2013.01.008
Jensen, 2007, Int. J. Hydrogen Energy, 32, 3253, 10.1016/j.ijhydene.2007.04.042
Ebbesen, 2012, J. Electrochem. Soc., 159, F482, 10.1149/2.076208jes
Jahangiri, 2014, Catal. Sci. Technol., 4, 2210, 10.1039/C4CY00327F
Kumar, 2012, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759
Roy, 2010, ACS Nano, 4, 1259, 10.1021/nn9015423
Styring, 2012, Faraday Discuss., 155, 357, 10.1039/C1FD00113B
Chueh, 2010, Science, 330, 1797, 10.1126/science.1197834
Kondratenko, 2013, Energy Environ. Sci., 6, 3112, 10.1039/c3ee41272e
Greenblatt, 2018, Joule, 2, 381, 10.1016/j.joule.2018.01.014
Y. Hori , Electrochemical CO2 reduction on metal electrodes , in Modern Aspects of Electrochemistry , ed. C. G. Vayenas , R.E. White and M.E. Gamboa-Aldeco , Springer , New York , 2008 , 42 , pp. 89–189
Kiehnel, 2017, J. Am. Chem. Soc., 139, 7217, 10.1021/jacs.7b00369
Wang, 2017, Angew. Chem., 129, 7955, 10.1002/ange.201703720
Diercks, 2018, Nat. Mater., 17, 301, 10.1038/s41563-018-0033-5
Gür, 1991, J. Catal., 129, 216, 10.1016/0021-9517(91)90025-Y
Graves, 2011, Renewable Sustainable Energy Rev., 15, 1, 10.1016/j.rser.2010.07.014
Ebbesen, 2009, J. Power Sources, 193, 349, 10.1016/j.jpowsour.2009.02.093
Sebastian, 2012, Renewable Sustainable Energy Rev., 16, 6803, 10.1016/j.rser.2012.08.008
Mousavi, 2017, Renewable Sustainable Energy Rev., 67, 477, 10.1016/j.rser.2016.09.060
Arani, 2017, Renewable Sustainable Energy Rev., 69, 9, 10.1016/j.rser.2016.11.166
Bolund, 2007, Renewable Sustainable Energy Rev., 11, 235, 10.1016/j.rser.2005.01.004
Cimuca, 2010, IEEE Trans. Energy Convers., 25, 526, 10.1109/TEC.2010.2045925
Strasik, 2010, Supercond. Sci. Technol., 23, 034021, 10.1088/0953-2048/23/3/034021
Vosburgh, 1978, J. Energy, 2, 106, 10.2514/3.62370
Budt, 2016, Appl. Energy, 170, 250, 10.1016/j.apenergy.2016.02.108
Venkataramani, 2016, Renewable Sustainable Energy Rev., 62, 895, 10.1016/j.rser.2016.05.002
Lund, 2009, Energy Convers. Manage., 50, 1172, 10.1016/j.enconman.2009.01.032
Bagdanavicius, 2014, Energy Convers. Manage., 77, 432, 10.1016/j.enconman.2013.09.063
Hydropower, Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, issue 3/5, International Renewable Energy Agency (IRENA), June 2012
I.E.A. Technology Roadmap: Hydropower © OECD/IEA; 2012, https://www.iea.org/publications/freepublications/publication/2012_Hydropower_Roadmap.pdf
International Renewable Energy Agency, Renewable Energy Technologies: Cost Analysis Series, Volume 1: Power Sector, issue 3/5, Hydropower (June 2012). http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf
Rehman, 2015, Renewable Sustainable Energy Rev., 44, 586, 10.1016/j.rser.2014.12.040
Barbour, 2016, Renewable Sustainable Energy Rev., 61, 421, 10.1016/j.rser.2016.04.019
Perez-Diaz, 2015, Renewable Sustainable Energy Rev., 44, 767, 10.1016/j.rser.2015.01.029
Ardizzon, 2014, Renewable Sustainable Energy Rev., 31, 746, 10.1016/j.rser.2013.12.043
Deane, 2010, Renewable Sustainable Energy Rev., 14, 1293, 10.1016/j.rser.2009.11.015
International Energy Agency, Energy Technology Perspectives 2015, www.iea.org/newsroomandevents/graphics/2015-06-30-installed-global-capacity-for-grid-connected-storage.html
Hadjipaschalis, 2009, Renewable Sustainable Energy Rev., 13, 1513, 10.1016/j.rser.2008.09.028
Kaldellis, 2010, Appl. Energy, 87, 2427, 10.1016/j.apenergy.2010.02.016
Luo, 2015, Appl. Energy, 137, 511, 10.1016/j.apenergy.2014.09.081
Agyenim, 2010, Renewable Sustainable Energy Rev., 14, 615, 10.1016/j.rser.2009.10.015
Sharma, 2009, Renewable Sustainable Energy Rev., 13, 318, 10.1016/j.rser.2007.10.005
Zalba, 2003, Appl. Therm. Eng., 23, 251, 10.1016/S1359-4311(02)00192-8
Hasnain, 1998, Energy Convers. Manage., 39, 1127, 10.1016/S0196-8904(98)00025-9
Liu, 2012, Renewable Sustainable Energy Rev., 16, 2118, 10.1016/j.rser.2012.01.020
R. G. Reddy , Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation, DOE-Solar Energy Technologies Program review, Oct 6, 2012 see http://www1.eere.energy.gov/solar/sunshot/pdfs/csp_review_meeting_042413_reddy.pdf
R. A. Huggins , Energy Storage: Fundamentals, Materials and Applications , Springer , 2nd edn, 2016
Economic Benefits of Increasing Electric Grid Resilience to Weather Outages, Executive Office of the President, The White House, August 2013, https://www.energy.gov/sites/prod/files/2013/08/f2/Grid%20Resiliency%20Report_FINAL.pdf
K. Eber and D.Corbus , Hawaii Solar Integration Study: Executive Summary, US National Renewable Energy Laboratory (NREL), NREL/TP-5500-57215, 2013, see https://www.nrel.gov/docs/fy13osti/57215.pdf
National Assessment of Energy Storage for Grid Balancing and Arbitrage, Phase II: WECC, ERCOT, EIC, Vol. 1: Technical Analysis, (Sept. 2013), PNNL-21388 Phase II/, https://energyenvironment.pnnl.gov/pdf/National_Assessment_Storage_PHASE_II_vol_1_final.pdf , accessed April 3, 2018
Chu, 2012, Nature, 488, 294, 10.1038/nature11475
C. Curry , Lithium-ion Battery Costs and Market, July 5, 2017, Bloomberg New Energy Finance, https://data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.pdf , accessed April 6, 2018
Technology Roadmap: Energy Storage, International Energy Agency 2014 report (OECD/IEA, 2014), available at https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf , accessed July 9, 2018
Jacobson, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 15060, 10.1073/pnas.1510028112
Jacobson, 2017, Joule, 1, 108, 10.1016/j.joule.2017.07.005
Clack, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 6722, 10.1073/pnas.1610381114
World Energy Resources: E-Storage 2016, World Energy Council, available at https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_E-storage_2016.pdf , accessed July 6, 2018
Yin, 2017, ChemCatChem, 9, 1545, 10.1002/cctc.201600646
Larcher, 2015, Nat. Chem., 7, 19, 10.1038/nchem.2085
Whittingham, 2018, Acc. Chem. Res., 51, 258, 10.1021/acs.accounts.7b00527