Tổng quan về các phương pháp thông gió phòng cháy chữa cháy và mô phỏng động học chất lỏng tính toán của hệ thống thông gió xả trong sự kiện cháy tại Velodrome: nghiên cứu trường hợp

Springer Science and Business Media LLC - Tập 1 - Trang 1-14 - 2019
Sayed Mojtaba Tabibian1, Maryam Khanian Najafabadi1, Behzad Shahizare1
1University of Malaya, Kuala Lumpur, Malaysia

Tóm tắt

Mục đích chính của thiết kế kỹ thuật phòng cháy chữa cháy là đảm bảo an toàn cho con người trong những tình huống có cháy tại các tòa nhà, bãi đỗ xe và hầm. Các khí độc và khí carbon monoxide phát sinh từ cháy đã cướp đi sinh mạng của nhiều nạn nhân, do đó, các yếu tố an toàn phòng cháy chữa cháy như tốc độ, nhiệt độ và động học khói đã được nhiều nhà nghiên cứu chú trọng để tạo điều kiện cho việc thoát hiểm an toàn trong trường hợp xảy ra cháy. Mục tiêu của bài báo này là tổng hợp các phương pháp thông gió trong an toàn phòng cháy và các phương pháp đo lường được sử dụng để đánh giá hiệu suất của hệ thống thông gió. Quản lý khói trong trường hợp xảy ra cháy có thể làm giảm lượng carbon monoxide, vốn là mối đe dọa chết người nhất đối với con người. Do đó, việc kiểm soát và loại bỏ khí và khói trong trường hợp có cháy là rất quan trọng đối với sự an toàn của con người và bảo vệ tài sản. Ngoài ra, bài báo này còn thực hiện một nghiên cứu trường hợp về sự lan truyền khói và loại bỏ khói trong môi trường Velodrome nơi xảy ra cháy. Để thực hiện nghiên cứu trường hợp này, mô phỏng động lực học chất lỏng tính toán (CFD) cho hệ thống thông gió thoát khí để quản lý khói trong môi trường của tòa nhà gọi là Velodrome đã được phát triển. Các kết quả đã được điều tra và phân tích trên mặt phẳng 3 chiều. Các kết quả của các mô phỏng CFD này cho thấy, nguồn gốc của cháy có thể được loại bỏ bằng cách kích hoạt hệ thống thông gió xả, và do đó, nguy cơ ảnh hưởng đến sự sống còn của các nạn nhân trong cháy và tài sản bị thiệt hại có thể được giảm thiểu.

Từ khóa

#an toàn cháy #thông gió #mô phỏng CFD #quản lý khói #thiết kế phòng cháy chữa cháy

Tài liệu tham khảo

Barbato L, Cascetta F, Musto M, Rotondo G (2014) Fire safety investigation for road tunnel ventilation systems: an overview. Tunn Undergr Space Technol 43:253–265 Solgi E, Hamedani Z, Fernando R, Skates H, Orji NE (2018) A literature review of night ventilation strategies in buildings. Energy Build 173:337–352 Cao C, Gao J, Wu L, Ding X, Zhang X (2017) Ventilation improvement for reducing individual exposure to cooking-generated particles in Chinese residential kitchen. Indoor Built Environ 26(2):226–237 Cao Z, Wang Y, Duan M, Zhu H (2017) Study of the vortex principle for improving the efficiency of an exhaust ventilation system. Energy Build 142:39–48 Kashef A, Yuan Z, Lei B (2013) Ceiling temperature distribution and smoke diffusion in tunnel fires with natural ventilation. Fire Saf J 62:249–255 Zhong W, Lv J, Li Z, Liang T (2013) A study of bifurcation flow of fire smoke in tunnel with longitudinal ventilation. Int J Heat Mass Transf 67:829–835 Liu Y, Cassady S (2014) A modified critical velocity for road tunnel fire smoke management with dedicated smoke extraction configuration. Case Stud Fire Saf 2:16–27 Wang F, Wang M (2016) A computational study on effects of fire location on smoke movement in a road tunnel. Tunn Undergr Space Technol 51:405–413 Li L, Li S, Wang X, Zhang H (2012) Fire-induced flow temperature along tunnels with longitudinal ventilation. Tunn Undergr Space Technol 32:44–51 Heidarinejad G, Mapar M, Pasdarshahri H (2016) A comprehensive study of two fire sources in a road tunnel: considering different arrangement of obstacles. Tunn Undergr Space Technol 59:91–99 Seike M, Kawabata N, Hasegawa M (2017) Quantitative assessment method for road tunnel fire safety: development of an evacuation simulation method using CFD-derived smoke behavior. Saf Sci 94:116–127 Musto M, Rotondo G (2015) CFD analysis of a realistic reduced-scale modeling equipped with axial jet fan. Fire Saf J 74:11–24 Guo X, Zhang Q (2014) Analytical solution, experimental data and CFD simulation for longitudinal tunnel fire ventilation. Tunn Undergr Space Technol 42:307–313 Gannouni S, Maad RB (2015) Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires. Tunn Undergr Space Technol 48:147–155 Zhang S, Yao Y, Zhu K, Li K, Zhang R, Lu S, Cheng X (2016) Prediction of smoke back-layering length under different longitudinal ventilations in the subway tunnel with metro train. Tunn Undergr Space Technol 53:13–21 Muhasilovic M, Duhovnik J (2012) CFD-based investigation of the response of mechanical ventilation in the case of tunnel-fire. Strojniski Vestnik/J Mech Eng 58(3):183–190 Fan CG, Ji J, Wang W, Sun JH (2014) Effects of vertical shaft arrangement on natural ventilation performance during tunnel fires. Int J Heat Mass Transf 73:158–169 Wang HY (2009) Prediction of soot and carbon monoxide production in a ventilated tunnel fire by using a computer simulation. Fire Saf J 44(3):394–406 Yi L, Xu Q, Xu Z, Wu D (2014) An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire. Tunn Undergr Space Technol 43:198–203 Zhong W, Li Z, Wang T, Liang T, Liu Z (2015) Experimental study on the influence of different transverse fire locations on the critical longitudinal ventilation velocity in tunnel fires. Fire Technol 51(5):1217–1230 Tanaka F, Majima S, Kato M, Kawabata N (2015) Performance validation of a hybrid ventilation strategy comprising longitudinal and point ventilation by a fire experiment using a model-scale tunnel. Fire Saf J 71:287–298 Tang F, Cao ZL, Chen Q, Meng N, Wang Q, Fan CG (2017) Effect of blockage-heat source distance on maximum temperature of buoyancy-induced smoke flow beneath ceiling in a longitudinal ventilated tunnel. Int J Heat Mass Transf 109:683–688 Yao Y, Cheng X, Zhang S, Zhu K, Shi L, Zhang H (2016) Smoke back-layering flow length in longitudinal ventilated tunnel fires with vertical shaft in the upstream. Appl Therm Eng 107:738–746 Du T, Yang D, Peng S, Liu Y, Xiao Y (2016) Performance evaluation of longitudinal and transverse ventilation for thermal and smoke control in a looped urban traffic link tunnel. Appl Therm Eng 96:490–500 Chen Y, Zhou X, Fu Z, Zhang T, Cao B, Yang L (2016) Vertical temperature distributions in ventilation shafts during a fire. Exp Thermal Fluid Sci 79:118–125 Beard AN (2016) Major fire spread in a tunnel with water mist: a theoretical model. Tunn Undergr Space Technol 53:22–32 Harish R, Venkatasubbaiah K (2014) Effects of buoyancy induced roof ventilation systems for smoke removal in tunnel fires. Tunn Undergr Space Technol 42:195–205 Ji J, Gao ZH, Fan CG, Sun JH (2013) Large Eddy Simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires. Int J Heat Mass Transf 66:531–542 Yuan Z, Lei B, Kashef A (2015) Experimental and theoretical study for tunnel fires with natural ventilation. Fire Technol 51(3):691–706 Weng MC, Yu LX, Liu F, Nielsen PV (2014) Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal. Tunn Undergr Space Technol 42:96–104 Ura F, Kawabata N, Tanaka F (2014) Characteristics of smoke extraction by natural ventilation during a fire in a shallow urban road tunnel with roof openings. Fire Saf J 67:96–106 Ji J, Wan H, Gao Z, Fu Y, Sun J, Zhang Y, Li K, Hostikka S (2016) Experimental study on flame merging behaviors from two pool fires along the longitudinal centerline of model tunnel with natural ventilation. Combust Flame 173:307–318 Tilley N, Rauwoens P, Merci B (2011) Verification of the accuracy of CFD simulations in small-scale tunnel and atrium fire configurations. Fire Saf J 46(4):186–193 Zhou W, Qin H, Qiu J, Fan H, Lai J, Wang K, Wang L (2017) Building information modelling review with potential applications in tunnel engineering of China. R Soc Open Sci 4(8):170174 Mei F, Tang F, Ling X, Yu J (2017) Evolution characteristics of fire smoke layer thickness in a mechanical ventilation tunnel with multiple point extraction. Appl Therm Eng 111:248–256 Vidmar P, Petelin S, Luin B (2012) Upgrade of a transverse ventilation system in a bi-directional tunnel. Therm Sci. https://doi.org/10.2298/TSCI120212053V Hahm D, Igor Maevski PE (2014) The effects of ventilation systems on fixed fire suppression systems in tunnels. ASHRAE Trans 120:T1 Yi L, Wei R, Peng J, Ni T, Xu Z, Wu D (2015) Experimental study on heat exhaust coefficient of transversal smoke extraction system in tunnel under fire. Tunn Undergr Space Technol 49:268–278 Wahlqvist J, Van Hees P (2013) Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior. Fire Saf J 62:102–114 Hostikka S, Janardhan RK, Riaz U, Sikanen T (2017) Fire-induced pressure and smoke spreading in mechanically ventilated buildings with air-tight envelopes. Fire Saf J 91:380–388 Zhang Y, Kacira M, An L (2016) A CFD study on improving air flow uniformity in indoor plant factory system. Biosyst Eng 147:193–205 Su C, Yao C (2016) Performance measurement of a smoke extraction system for buildings in full-scale hot smoke test. Measurement 93:340–350 Huang H, Ooka R, Chen H, Kato S (2009) Optimum design for smoke-control system in buildings considering robustness using CFD and Genetic algorithms. Build Environ 44(11):2218–2227 Węgrzyński W, Krajewski G (2017) Influence of wind on natural smoke and heat exhaust system performance in fire conditions. J Wind Eng Ind Aerodyn 164:44–53 Xu Z, Lu XZ, Guan H, Chen C, Ren AZ (2014) A virtual reality based fire training simulator with smoke hazard assessment capacity. Adv Eng Softw 68:1–8 Yang D, Li P (2015) Dimensionless design approach, applicability and energy performance of stack-based hybrid ventilation for multi-story buildings. Energy 93:128–140 Lim YH, Yun HW, Song D (2015) Indoor environment control and energy saving performance of a hybrid ventilation system for a multi-residential building. Energy Procedia 78:2863–2868 Gao R, Li A, Hao X, Lei W, Zhao Y, Deng B (2012) Fire-induced smoke control via hybrid ventilation in a huge transit terminal subway station. Energy Build 45:280–289 Deckers X, Haga S, Sette B, Merci B (2013) Smoke control in case of fire in a large car park: full-scale experiments. Fire Saf J 57:11–21 Enright PT (2014) Impact of jet fan ventilation systems on sprinkler activation. Case Stud Fire Saf 1:1–7 Viegas JC (2010) The use of impulse ventilation for smoke control in underground car parks. Tunn Undergr Space Technol 25(1):42–53 Merci B, Shipp M (2013) Smoke and heat control for fires in large car parks: lessons learnt from research? Fire Saf J 57:3–10 NFPA, NFPA 92 Standard for Smoke Control Systems 2015 Edition, 2015 Ai ZT, Mak CM (2016) Short-term mechanical ventilation of air-conditioned residential buildings: a general design framework and guidelines. Build Environ 108:12–22 Nomura M, Hiyama K (2017) A review: natural ventilation performance of office buildings in Japan. Renew Sustain Energy Rev 74:746–754