Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs

Jiaoying Jiang1, Kok-Meng Lee2, Jingjing Ji2
1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
2State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, A., Banala, S.K., Agrawal, S.K., Binder-Macleod, S.A.: Design of a two degree-of-freedom ankle–foot orthosis for robotic rehabilitation. In: IEEE International Conference on Rehabilitation Robotics, 2005. IEEE, pp. 41–44 (2005)

Ayas, M.S., Altas, I.H.: Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng. Pract. 59, 44–54 (2017)

Balasubramanian, K., Rattan, K.S.: Fuzzy logic control of a pneumatic muscle system using a linearing control scheme. In: IEEE 22nd International Conference North American Fuzzy Information Processing Society (NAFIPS), 2003. IEEE, pp. 432–436 (2003)

Banala, S.K., Agrawal, S.K., Kim, S.H., Scholz, J.P.: novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans. Mechatron. 15(2), 216–225 (2010)

Belda-Lois, J.M., Mena-del, Horno S., Bermejo-Bosch, I., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Losa, M., Molinari, M., Tamburella, F., Ramos, A., Caria, A., Solis-Escalante-Solis, T., Brunner, C., Rea, M.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8(1), 66 (2011)

Bharadwaj, K., Sugar, T.G., Koeneman, J.B., Koeneman, E.J.: Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J. Biomech. Eng. 127(6), 1009–1013 (2005)

Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle–foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 24–31 (2004)

Bobath, K., Bobath, B.: Control of motor function in the treatment of cerebral palsy. Physiotherapy 43(10), 295 (1957)

Boian R.F., Lee C.S., Deutsch J.E., Burdea G., Lewis J.A.: Virtual reality-based system for ankle rehabilitation post stroke. In: 1st International Workshop Virtual Reality Rehabil. vol. 77, p. 86 (2002)

Bonita, R., Beaglehole, R.: Recovery of motor function after stroke. Stroke 19, 1497–1500 (1988)

Bowers, R.J., Ross, K.: A review of the effectiveness of lower limb orthoses used in cerebral palsy. Int. Soc. Prosthet. Orthot. 4(4), 277–290 (2009)

Brunnstrom, S.: Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys. Ther. 46(4), 357–375 (1966)

Cakar, E., Durmus, O., Tekin, L., Dincer, U., Kiralp, M.Z.: The ankle–foot orthosis improves balance and reduces fall risk of chronic spastic hemiparetic patients. Eur. J. Phys. Rehabil. Med. 46(3), 363–368 (2010)

Chen, C., Yeung, K., Wang, C., Chu, H., Yeh, C.: Anterior ankle–foot orthosis effects on postural stability in hemiplegic patients. Arch. Phys. Med. Rehabil. 80(12), 1587–1592 (1999)

Corcoran, P.J., Jebsen, R.H., Brengelmann, G.L., Simons, B.C.: Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch. Phys. Med. Rehabil. 51(2), 69–77 (1970)

Del-Ama, A.J., Gil-Agudo, A., Pons, J.L., Moreno, J.C.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11, 27–29 (2014)

Dettwyler, M., Stacoff, A., Kramers-de Quervain, I.A., Stüssi, E.: Modelling of the ankle joint complex. Reflections with regards to ankle prostheses. Foot Ankle Surg. 10(3), 109–119 (2004)

Deutsch, J.E., Latonio, J., Burdea, G.C., Boian, R.: Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 10(4), 416–430 (2001)

Deutsch, J.E., Lewis, J.A., Burdea, G.: Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 30–35 (2007)

Dickstein, R., Hocherman, S., Pillar, T., Shaham, R.: Stroke rehabilitation: three exercise therapy approaches. Phys. Ther. 66(8), 1233–1238 (1986)

Dimyan, M.A., Cohen, L.G.: Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7(2), 76–85 (2011)

Dipietro, L., Krebs, H.I., Volpe, B.T., Stein, J., Bever, C., Mernoff, S.T., Fasoli, S.E., Hogan, N.: Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace. IEEE Trans. Neural. Rehabil. Eng. 20(1), 48–57 (2012)

Dul, J., Shiavi, R., Green, N.E.: Simulation of tendon transfer surgery. Eng. Med. 14(1), 31–38 (1985)

Fasoli, S.E., Krebs, H.I., Stein, J., Frontera, W.R., Hogan, N.: Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 84(4), 477–482 (2003)

Fasoli, S.E., Krebs, H.I., Stein, J., Frontera, W.R., Hughes, R., Hogan, N.: Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch. Phys. Med. Rehabil. 85(7), 1106–1111 (2004)

Ferris, D.P., Czerniecki, J.M., Hannaford, B.: An ankle–foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21(2), 189 (2005)

Forrester, L.W., Roy, A., Krebs, H.I., Macko, R.F.: Ankle training with a robotic device improves hemiparetic gait after a stroke. Neurorehabil. Neural Repair 25(4), 369–377 (2011)

Forrester, L.W., Roy, A., Goodman, R.N., Rietschel, J., Barton, J.E., Krebs, H.I., Macko, R.F.: Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation 33(1), 85–97 (2013)

Girone, M., Burdea, G., Bouzit, M., Popescu, V., Deutsch, J.E.: A Stewart platform-based system for ankle telerehabilitation. Auton. Rob. 10(2), 203–212 (2001)

Goodman, R.N., Rietschel, J.C., Roy, A., Jung, B.C., Diaz, J., Macko, R.F., Forrester, L.W.: Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke. J. Rehabil Res. Dev. 51(2), 213–227 (2014)

Gregorio, R.D., Parenti-Castelli, V., O’Connor, J.J., Leardini, A.: Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45(3), 305–313 (2007)

Gui, K., Liu, H., Zhang, D.: Toward multimodal human-robot interaction to enhance active participation of users in gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 2054–2066 (2017)

Hsu, J.D., Michael, J., Fisk, J.: AAOS Atlas of Orthoses and Assistive Devices E-Book. Elsevier Health Sci., Philadelphia (2008)

Jamwal, P.K., Xie, S.Q., Hussain, S., Parsons, J.G.: An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mechatron. 19(1), 64–75 (2014)

Jette, D.U., Warren, R.L., Wirtalla, C.: The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch. Phys. Med. Rehabil. 86(3), 373–379 (2005)

Jiang, J.Y., Lee, K.-M., Ji, J.J.: Design criteria for developing an anatomy-based ankle–foot-orthosis: a state-of-the art review and needs of mind, motor and motion recovery following stroke. In: IEEE/ASME International Conference Advanced Intelligent Mechatronics (AIM) 2018. (2018)

Jimenez-Fabian, R., Verlinden, O.: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med. Eng. Phys. 34(4), 397–408 (2012)

Katherine Salter B., Mark Hartley B., Norine Foley B.: Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke. J. Rehabil. Med. 38(113Á/117) (2006)

Katušić, A.: Early brain injury and plasticity: reorganization and functional recovery. Transl. Neurosci. 2(1), 33–42 (2011)

Kim, J., Hwang, S., Sohn, R., Kim, Y., Lee, Y.: Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: a preliminary study. Appl. Bionics Biomech. 8(3–4), 377–384 (2011)

Krebs, H.I., Hogan, N., Aisen, M.L., et al.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

Krebs, H.I., Volpe, B.T., Aisen, M.L., Hogan, N.: Increasing productivity and quality of care: robot-aided neuro-rehabilitation. J. Rehabil. Res. Dev. 37(6), 639 (2000)

Kwakkel, G., Kollen, B.J., Wagenaar, R.C.: Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy 85(7), 377–391 (1999)

Langhammer, B., Stanghelle, J.K.: Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin. Rehabil. 14(4), 361–369 (2000)

Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)

Langhorne, P., Bernhardt, J., Kwakkel, G.: Stroke rehabilitation. Lancet 377(9778), 1693–1702 (2011)

Leardini, A., O’Connor, J.J., Giannini, S.: A geometric model of the human ankle joint. J. Biomech. 32(6), 585–591 (1999)

Li, J.: Rehabilitation Medicine. People’s Medical Publishing House, Beijing (2014)

Lin, C.C.K., Ju, M.S., Chen, S.M., Pan, B.W.: A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28(2), 79–86 (2008)

Low, K.H., Liu, X., Goh, C.H., Yu, H.: Locomotive control of a wearable lower exoskeleton for walking enhancement. J. Vib. Control 12(12), 1311–1336 (2006)

Marinkovich, D.C.: Modeling and simulation of the foot and ankle to predict ankle and subtalar joint motion. Diss. Abstr. Int. 67(03), 1663–1718 (2006)

Martelli, D., Vannetti, F., Cortese, M., Tropea, P., Giovacchini, F., Micera, S., Monaco, V., Vitiello, N.: The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control. Robotica. 32(8), 1317–1330 (2014)

Mattacola, C.G., Dwyer, M.K.: Rehabilitation of the ankle after acute sprain or chronic instability. J. Athl. Train. 37(4), 413 (2002)

Maulden, S.A., Gassaway, J., Horn, S.D., Smout, R.J., DeJong, G.: Timing of initiation of rehabilitation after stroke. Arch. Phys. Med. Rehabil. 86(12), 34–40 (2005)

McGehrin, K., Roy, A., Goodman, R., Rietschel, J., Forrester, L., Bever, C.: Ankle robotics training in sub-acute stroke survivors: concurrent within-session changes in ankle motor control and brain electrical activity. Neurology 78(1), 1–175 (2012)

Mirelman, A., Bonato, P., Deutsch, J.E.: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40(1), 169–174 (2009)

Mojica, J.A.P., Manakmur, R., Kobayashi, T., Handa, T., Morohashi, I., Watanabe, S.: Effect of ankle–foot orthosis (AFO) on body sway and walking capacity of hemiparetic stroke patients. Tohoku J. Exp. Med. 156(4), 395–401 (1988)

Musicco, M., Emberti, L., Nappi, G., Caltagirone, C.: Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Arch. Phys. Med. Rehabil. 84(4), 551–558 (2003)

Neumann, D.A.: Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. Mosby/Elsevier, Chicago (2010)

Noël, M., Cantin, B., Lambert, S., Gosselin, C.M., Bouyer, L.J.: An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 390–399 (2008)

Park, Y.L., Chen, B.-R., Perez-Arancibia, N.O., Young, D., Stirling, L., Wood, R.J., Goldfield, E.C.: Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir. Biom. 9(1), 016007 (2014)

Reinkensmeyer, D.J., Aoyagi, D., Emken, J.L., Galvez, J.A., Ichinose, W., Kerdanyan, G., Maneekobkunwong, S., Minakata, K., Nessler, J.A., Weber, R., Roy, R.R., Leon, R., Bobrow, J.E., Harkema, S.J., Edgerton, V.R.: Tools for understanding and optimizing robotic gait training. J. Rehabil. Res. Dev. 43(5), 657–670 (2006)

Ren, Y., Wu, Y.N., Yang, C.Y., Xu, T., Harvey, R.L., Zhang, L.Q.: Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 589–596 (2016)

Robinson, W., Smith, R., Aung, O., Ada, L.: No difference between wearing a night splint and standing on a tilt table in preventing ankle contracture early after stroke: a randomised trial. Aust. J. Physiother. 54(1), 33–38 (2008)

Rood, M.S.: Neurophysiological reactions as a basis for physical therapy. Phys. Ther. 34(9), 444–449 (1954)

Roy, A., Krebs, H.I., Williams, D.J., Bever, C.T., Forrester, L.W., Macko, R.M., Hogan, N.: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Robot. 25(3), 569–582 (2009)

Roy, A., Forrester, L.W., Macko, R.F.: Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke. J. Rehabil. Res. Dev. 48, 417–430 (2011)

Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G.: A high performance 2-dof over-actuated parallel mechanism for ankle rehabilitation. In: IEEE International Conference Robotics and Automation (ICRA), 2009. IEEE, pp. 2180–2186 (2009)

Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G.: Control strategies for patient-assisted training using the ankle rehabilitation robot (ARBOT). IEEE/ASME Trans. Mechatronics 18(6), 1799–1808 (2013)

Sale, P., Franceschini, M., Waldner, A., Hesse, S.: Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur. J. Phys. Rehabil Med. 48(1), 111–121 (2012)

Selles, R.W., Li, X., Lin, F., Chung, S.G., Roth, E.J., Zhang, L.Q.: Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch. Phys. Med. Rehabil. 86(12), 2330–2336 (2005)

Silveira, A.C.P.: Extended Biomechanical Model of the Ankle–Foot Complex: Incorporation of Muscles and Ligaments. University of Coimbra, Coimbra (2015)

Thanh, T.U.D.C., Ahn, K.K.: Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics 16(9), 577–587 (2006)

Tsoi, Y.H., Xie, S.Q.: Online estimation algorithm for a biaxial ankle kinematic model with configuration dependent joint axes. J. Biomech. Eng. 133(2), 021005 (2011)

Van der Kooij, H., Koopman, B., van Asseldonk, E.H.F.: Body weight support by virtual model control of an impedance controlled exoskeleton (LOPES) for gait training, In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008, pp. 1969–72 (2008)

Varol H.A., Goldfarb M.: Decomposition-based control for a powered knee and ankle transfemoral prosthesis. Rehabilitation robotics. In: IEEE 10th International Conference on Rehabilitation Robotics (ICORR), 2007. IEEE, pp. 783–789 (2007)

Volpe, B.T., Krebs, H.I., Hogan, N., Edelsteinn, L., Diels, C.M., Aisen, M.L.: Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 53(8), 1874 (1999)

Volpe, B.T., Krebs, H.I., Hogan, N., Edelstein, L., Diels, C., Aisen, M.: A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology 54(10), 1938–1944 (2000)

Voss, D.E., Ionta, M.K., Myers, B.J., Knott, M.: Proprioceptive Neuromuscular Facilitation: Patterns and Techniques. Harper & Row, Philadelphia (1985)

Wang, Z.Y.: Surgery of the Foot and Ankle. People’s Medical Publishing House, Beijing (2006)

Wang, R.Y., Lu, Y., Lee, C.C., Lin, P.Y., Wang, M.F., Yang, Y.R.: Effects of an ankle–foot orthosis on balance performance in patients with hemiparesis of different durations. Clin. Rehabil. 19(1), 37–44 (2005)

Wang, R.Y., Lin, P.Y., Lee, C.C., Yang, Y.R.: Gait and balance performance improvements attributable to ankle–foot orthosis in subjects with hemiparesis. Am. J. Phys. Med. Rehabil. 86(7), 556–562 (2007)

Ward, J., Sugar, T., Standeven, J., Engsberg, J.R.: Stroke survivor gait adaptation and performance after training on a powered ankle foot orthosis. In: International Conference on Robotics and Automation (ICRA), Anchorage, 2010. pp. 211–216 (2010)

Wiggin, M.B., Sawicki, G.S., Collins, S.H.: An exoskeleton using controlled energy storage and release to aid ankle propulsion. In: 2011 IEEE International Conference Rehabilitation Robotics (ICORR), pp. 1–5 (2011)

Williams, L.L.: A Finite Element Model of a Realistic Foot and Ankle for Flatfoot Analysis. University of Arizona, Tucson (2017)

Yoon, J., Ryu, J., Lim, K.B.: Reconfigurable ankle rehabilitation robot for various exercises. J. Field Rob. 22(S1), 15–33 (2006)