Review of aerogel-based materials in biomedical applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223
Yin W, Rubenstein D (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 683–694
Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater. doi: 10.1155/2010/409310
Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Edit 37(1–2):23–45
Rajendar RM, Michael AM, Vasudha S, Bano S, Raj RR, Subhas CK, Mark AM (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):035002
García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806
Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8
Sun YR, Yang MX, Yu F, Chen JH, Ma J (2015) Synthesis of graphene aerogel adsorbents and their applications in water treatment. Prog Chem 27(8):1133–1146
Gao T, Jelle BP, Gustavsen A, He JY (2015) Synthesis and characterization of aerogel glass materials for window glazing applications. Adv Bioceram Porous Ceram Vii:140–149
Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195
Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohyd Polym 113:272–278
Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266
Barnyakov AY, Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Gulevich VV, Danilyuk AF, Katcin AA, Kononov SA, Kravchenko EA, Kuyanov IA, Onuchin AP, Ovtin IV, Rodyakin VA (2014) Threshold aerogel Cherenkov counters of the KEDR detector. J Instrum 9:C09005
Tonguc BT, Citci S (2014) Aerogel efficiencies of threshold Cherenkov counters. Arab J Sci Eng 39(7):5739–5743
Sabri F, Marchetta JG, Rifat Faysal KM, Brock A, Roan E (2014) Effect of aerogel particle concentration on mechanical behavior of impregnated RTV 655 compound material for aerospace applications. Adv Mater Sci Eng. doi: 10.1155/2014/716356
Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Inter 3(3):613–626
Zhang XX, Wei GS, Yu F (2005) Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. In: HT2005: proceedings of the ASME summer heat transfer conference 2005, vol 1 pp 7–12
Venkataraman M, Mishra R, Arumugam V, Jamshaid H, Militky J (2015) Acoustic properties of aerogel embedded nonwoven fabrics. In: 6th International conference on Nanocon 2014, pp 24–130
Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustain Basel 6(9):5839–5852
Wang JC, Shen J, Ni XY, Wang B, Wang XD, Li J (2010) Acoustic properties of nanoporous silica aerogel. Rare Metal Mater Eng 39:14–17
Habib Ullah M et al (2015) Aerogel poly(butylene succinate) biomaterial substrate for RF and microwave applications. Sci Rep 5:12868. doi: 10.1038/srep12868
Julio MD, Ilharco LM (2014) Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater 199:29–39
Veres P, Lopez-Periago AM, Lazar I, Saurina J, Domingo C (2015) Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496(2):360–370
Gaudio PD, Auriemma G, Mencherini T, Porta GD, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102(1):185–194
Garcia-Gonzalez CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86(4):1425–1438
Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63
Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34(2):124–136
Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285(1–3):303–308
Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178
Peng L, Dong SY, Li N, Suo GC, Huang TL (2015) Construction of a biocompatible system of hemoglobin based on AuNPs–carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuat B Chem 210:418–424
Sun QQ, Xu MW, Bao SJ, Li CM (2015) pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Nanotechnology 26(11):115602
Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1(3):195–211
Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861
Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234
Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968
Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston
Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energ Rev 34:273–299
Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Technol 8(1):1–6
Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339
Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fibers Fabr 8(2):134–139
Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43
Hair LM, Pekala RW, Stone RE, Chen C, Buckley SR (1988) Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets. J Vac Sci Technol A 6(4):2559–2563
Li N, Zhang Q, Liu J, Joo J, Lee A, Gan Y, Yin Y (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun (Camb) 49(45):5135–5137
Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 215–234
Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27(1):59–63
Welsch F, Nemec MD, Lawrence WB (2008) Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl:CD(SD) Rats. Int J Toxicol 27(1):43–57
Wang XL, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Helary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244
Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zheng H (2011) Preparation of Cu–SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56(7):685–690
Hair LM, Coronado PR, Reynolds JG (2000) Mixed-metal oxide aerogels for oxidation of volatile organic compounds. J Non-Cryst Solids 270(1–3):115–122
Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100(5):1307–1315
Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1–3):295–302
Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69(3):935–942
Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479
Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 519–574
Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 695–717
Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60
Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42(1):169–175
Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface 8(4–5):396–400
Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233
Su C-W, Chen S-Y, Liu D-M (2013) ***Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun 49(36):3772–3774
Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77
Chang XH, Chen DR, Jiao XL (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112(26):7721–7725
Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–673
Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536
Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884
Lee WL, Shi WX, Low ZY, Li SZ, Loo SCJ (2012) Modeling of drug release from biodegradable triple-layered microparticles. J Biomed Mater Res A 100A(12):3353–3362
Delfour MC (2012) Drug release kinetics from biodegradable polymers via partial differential equations models. Acta Appl Math 118(1):161–183
Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41
Maver U, Godec A, Bele M, Planinšek O, Gaberšček M, Srčič S, Jamnik J (2007) Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm 330(1–2):164–174
Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol–Gel Sci Technol. doi: 10.1007/s10971-015-3888-9
García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohyd Polym 88(4):1378–1386
Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173
Colilla M, Baeza A, Vallet-Regí M (2015) Mesoporous silica nanoparticles for drug delivery and controlled release applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1309–1344
Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74
Rosenholm JM, Linden M (2008) Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control Release 128(2):157–164
Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9(4):443–452
Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluid 73:34–42
Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng 2013:7
Schwertfeger F, Zimmermann A, Krempel H (2001) Use of inorganic aerogels in pharmacy. Google Patents
Godec A, Maver U, Bele M, Planinsek O, Srcic S, Gaberscek M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140
Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels. Google Patents
Lee KP, Gould GL (2006) Aerogel powder therapeutic agents. Google Patents
Marin MA, Mallepally RR, McHugh MA (2014) Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids 91:84–89
Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluid 72:111–119
Chiang C-Y, Chu C-C (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25
Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675
Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Supplement):194–205
Garcia-Gonzalez CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid 79:152–158
Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A(5):1307–1315
Wang X, Jana SC (2013) Synergistic hybrid organic–inorganic aerogels. ACS Appl Mater Interfaces 5(13):6423–6429
Ree M, Goh WH, Kim Y (1995) Thin films of organic polymer composites with inorganic aerogels as dielectric materials: polymer chain orientation and properties. Polym Bull 35(1–2):215–222
Sanli D, Ulker Z, Giray S, Kızılel S, Erkey C (2011) PEG-hydrogel coated silica aerogels: a novel drug delivery system. Paper presented at the 13th European meeting on supercritical fluids, The Hague, Netherlands
Ulker Z, Erkey C (2014) A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4(107):62362–62366
Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4(3):155–180
Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33(9):853–874
Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Dev 9(6):577–594
Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):226–236
Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar S (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19
Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136
Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Lower Extrem Wounds 13(3):180–190
Jones JR (2015) Sol–gel materials for biomedical applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1345–1370
Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23
Claiborne TE, Bluestein D, Schoephoerster RT (2009) Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int J Artif Organs 32(5):262–271
Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein DA (2010) Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A 92(4):1431–1439
Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med 19(5):2207–2213
Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids 285(1–3):123–127
Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids 54(3):290–295
Aimé C, Coradin T, Fernandes FM (2015) Biomimetic sol–gel materials. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 605–650
Nakanishi K (2015) Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 745–766
Ge J, Li M, Zhang Q, Yang CZ, Wooley PH, Chen X, Yang S-Y (2013) Silica aerogel improves the biocompatibility in a poly-caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:7
Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47
Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159
Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33
Rocco P, Viggiano I, Schiraldi DA (2014) Fabrication and mechanical characterization of lignin-based aerogels. Green Mater 2(3):153–158
Yu H, Wooley PH, Yang S-Y (2009) Biocompatibility of poly-ε-caprolactone–hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 4(1):1–9
Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589
Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp PG01. Process Biochem 42(4):669–675
Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138
Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495
Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456
Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923
Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91
Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662
Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145
Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22:749–761
Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337
Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55
Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611
Hrubesh LW, Pekala RW (1994) Dielectric properties and electronic applications of aerogels. In: Attia Y (ed) Sol–gel processing and applications. Springer, Berlin, pp 363–367
Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Phys B 276:392–393
Lawrence Livermore National L, United S, Department of E, United S, Department of E, Office of S, Technical I (1995) The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water. United States. Dept. of Energy; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy. http://worldcat.org . http://www.osti.gov/servlets/purl/80970-2Z3y2Y/webviewable/
Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore
Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195(3):491–503
Sallaz-Damaz Y, Derome L, Mangin-Brinet M, Loth M, Protasov K, Putze A, Vargas-Trevino M, Veziant O, Buenerd M, Menchaca-Rocha A, Belmont E, Vargas-Magana M, Leon-Vargas H, Ortiz-Velasquez A, Malinine A, Barao F, Pereira R, Bellunato T, Matteuzzi C, Perego DL (2010) Characterization study of silica aerogel for Cherenkov imaging. Nucl Instrum Meth A 614(2):184–195
Allkofer Y, Amsler C, Horikawa S, Johnson I, Regenfus C, Rochet J (2007) A novel aerogel Cherenkov detector for DIRAC-II. Nucl Instrum Methods A 582(2):497–508
Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357
Xie Y, Beamish J (1996) Ultrasonic velocity and attenuation in silica aerogels at low temperatures. Czech J Phys 46:2723–2724
Schlief T, Gross J, Fricke J (1992) Ultrasonic-attenuation in silica aerogels. J Non-Cryst Solids 145(1–3):223–226
Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1–3):210–215
Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465
Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill cleanup—intrinsic absorbing properties. Energ Source 23(9):831–843
Krainov VP, Smirnov MB (2002) Laser induced fusion in aerogel. Laser Phys 12(4):781–785
Krainov VP, Smirnov MB (2001) Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel. J Exp Theor Phys 93(3):485–490