Review of Nuclear Thermal Propulsion Systems
Tài liệu tham khảo
A. Boxberger, M. Lau, Q.H. Le, C. Syring, B. Wollenhaupt, R.A. Gabrielli, G. Herdrich, Advanced Propulsion Systems Engineering Report, Technical Report Deliverable D23.1 – Report to the European Commission, Contract No. 284081, Disruptive Technologies For Space Power And Propulsion (DiPoP) Consortium, Stuttgart, Germany, 2012.
Zubrin, 2000
Messerschmid, 2004
Shepherd, 1972
Auweter-Kurtz, 1992
ITER – Technical Basis, Project Report, International Thermonuclear Experimental Reactor, Wien, Engineering Design Activity, 2002.
Paus, 2002
Bethge, 2008
M.S. Litz, G. Merkel, Controlled Extraction of Energy from Nuclear Isomers, Technical Report, Army Research Laboratory, SEDD, DEPG, Adelphi, Maryland, December 2004.
Frisbee, 2003, Advanced space propulsion for the 21st century, J. Propuls. Power, 19, 1129, 10.2514/2.6948
J.S. Clark, S.K. Borowski, M.C. McIlwain, D.G. Pellaccio, Nuclear thermal propulsion transportation systems for lunar/mars exploration, in: Nuclear Power Engineering in Space-Nuclear Rocket Engines, Semipalatinsk, Kazakhstan, September 22–26, 1992.
Ross, 1968, Nuclear rocket propulsion
Esnault-Pelterie, 1913, Considérations sur les résultats d'un allégement indéfini des moteurs, J. Phys. Theor. Appl., 3, 218, 10.1051/jphystap:019130030021800
Reece Roth, 1986
W.R. Corliss, Nuclear Propulsion for Space, Atomic Energy Commission, Division of Technical Information, Oak Ridge, TN, USA, 1967.
W.H. Robbins, H.B. Finger, An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program, Technical Report NASA Contractor Report 187154, AIAA-91-3451, NASA Lewis Research Center, 1991.
A. Bond, A.R. Martin, R.A. Buckland, T.J. Grant, A.T. Lawton, H.R. Mattison, R.C. Parkinson, G. Richards, J. Strong, G. Webb, A. White, P. Wright, Project Daedalus—The Final Report of the BIS, Technical Report, British Interplanetary Society, 12 Bessborough Gardens, London, England, 1978.
C. Bruno, T.J. Larence, D.G. Fearn, M. Auweter-Kurtz, H. Kurtz, R.X. Lenard, A. Del Rossi, Nuclear Space Power and Propulsion Systems, vol. 225, AIAA—Progress in Astronautics and Aeronautics, 181 Alexander Bell Drive, Suite 500, Reston, VA, USA, 2008.
Herdrich, 2012, Advanced plasma (propulsion) concepts at IRS, Vac. J., 88, 36
Romero, 1966, Potentialities of radioisotope propulsion for space probes, AIAA J. Spacecr., 3, 570, 10.2514/3.28492
A.A. Sonzogni, Decay database, Evaluated Nuclear Data File (ENDF), ENDF-6, International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Nuclear Data Section, December 2006.
R.L. Moore, C.A. Rohrmann, Quarterly Report: October–December, 1967, Technical Report BNWL – 680, Division of Isotope Development Programs, Pacific Northwest Laboratory, Richland, Washington, January 1968.
J.S. MacKay, An Evaluation of Some Special Techniques for Nuclear Waste Disposal in Space, NASA Technical Memorandum X – 62,272, NASA, Ames Research Center, Moffett Field, CA, 1973.
M. King, R. Simms, J.C. Stansek, Radioisotope Propulsion Technology Program (POODLE) – Final Report, Volume VI – POODLE System Analyses, Technical Report, AEC/NASA Space Nuclear Propulsion Office, 1967.
F.E. Rom, Nuclear-rocket Propulsion, Technical Report NASA Technical Memorandum X-1685, Lewis Research Center, Cleveland, OH, November 1968.
S.K. Borowski, Robotic planetary science missions enabled with small NTR engine/stage technologies, in: 12th Symposium on Space Nuclear Power and Propulsion, NASA Lewis Research Center, Albuquerque, New Mexico, January 8–12, 1995.
Aerojet-General Corporation and NASA, PHOEBUS-2 Nozzle Design Program, Preliminary Design Phase Summary Report No. RP-SR-0001 (vol. I) National Aeronautics and Space Administration Contract SNPC-35, NASA Space Nuclear Propulsion Office, Cleveland Extension, August 1965.
J.H. Altseimer, Summary of Nuclear Propulsion Applicability, Technical Report, NASA Center for Aerospace Information (CASI), NASA Ames Research Center, 1975.
Angelo, 1985
J.T. Walton, An Overview of Tested and Analyzed NTP Concepts, Technical Report, AIAA. 91-3503, 1991.
G.R. Schmidt, J.A. Bonometti, P.J. Morton, Nuclear pulse propulsion - orion and beyond, in: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, no. AlAA 2000-3856, American Institute of Aeronautics and Astronautics, Huntsville, Alabama, July 16–19, 2000.
F. Sokoloc, K. Fukuda, H.P. Nawada, Thorium Fuel Cycle – Potential Benefits and Challenges, Technical Report IAEA-TECDOC-1450, IAEA – International Atomic Energy Agency, 2005.
M.R. Bhat, R.E. Kaiser, S.G. Carpenter, C.W. Reich, B.R. Leonard, D.A. Kottwitz, J.K. Thompson, J.R. Smith, R.C. Young, M.S. Moore, W.P. Poenitz, R.E. Hunter, L. Stewart, T.J. Hirons, Fission crossection data, Evaluated Nuclear Data File (ENDF), MAT 9228, Revision 1, ENDF-6, International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Nuclear Data Section, 1977, 1980.
E.M. Redding, The Feasibility of Nuclear-powered Rockets, Technical Report, Lexington Project, Massachusetts Institute of Technology, Cambridge, MA, USA, September 1948.
Zubrin, 1991, Nuclear salt water rockets, J. Br. Interplanet. Soc., 44, 371
IAEA, The Role of Nuclear Power and Nuclear Propulsion in the Peaceful Exploration of Space, Technical Report, International Atomic Energy Agency Vienna, Austria, 2005.
M.S. El-Genk, Pellet bed reactor for nuclear propelled vehicles: Pt. 1 – reactor technology, in: NASA Conference Publication 10079 Nuclear Thermal Propulsion, Cleveland, 1991.
V.E. Haloulakas, Pellet bed reactor for nuclear propelled vehicles, II, in: NASA Conference Publication 10079 Nuclear Thermal Propulsion, Cleveland, 1991.
S.D. Howe, Assessment of the advantages and feasibility of a nuclear rocket for a manned mars mission, in: Proceedings from Manned Mars Mission Workshop, June 1985, Preprint LA-UR-85-2442.
announced by Bruce T. Lundin, Director, Press Release for Friday, January 5, 1973, 4:00 p.m, National Aeronautics and Space Administration, Lewis Research Center, 21000 Brookpark Road, Cleveland, OH, 1973.
M.D. Bowles, Science in flux – NASA's nuclear program at plum brook station 1955 – 2005, The NASA History Series, National Aeronautics and Space Administration, NASA History Division, Office of External Relations, Washington, DC, June 2006.
K. Ardron, J.-P. Lonjaert, Overview of the UK EPRTM GDA Submission, Technical Report, AREVA NP & EDF, UKEPR-0013-001 Issue 02, 2012.
B. Fishbine, R. Hanrahan, S. Howe, R. Malenfant, C. Scherer, H. Sheinberg, O.J. Ramos, Nuclear Rocket: to Mars and Beyond, National Security Science (Los Alamos National Laboratory), 2011.
Pratt & Whitney, R.C. Parsley, Advanced Propulsion Engine Assessment Based on a Cermet Reactor, Nuclear Propulsion TIM, Pratt & Whitney, October 20–23, 1992.
J.R. Wetch, A.Y. Goldin, A.A. Koroteev, Development of Nuclear Rocket Engines in the USSR, Technical Report, AIAA 91-3648, 1991.
RD0410. Nuclear Rocket Engine. Advanced launch vehicles, company web site of OSC Konstruktorskoe Buro Khimavtomatiky (KBKhA), 2014, http://www.kbkha.ru/?p=8&cat=11&prod=66, retrieved 19/8/2014.
G.L. Kulcinsky, NEEP 602 Course Notes: Nuclear Power in Space – 13 – History of Fission Propulsion, Fusion Technology Institute, University of Wisconsin, Madison, 2000.
Aerospace group, space division, Integrated Manned Interplanetary Spacecraft Concept Definition Final Report – Volume IV: System Definition, Technical Report D2-113544 – 4, NASA Contract NAS1 – 6774, The Boeing Company, Seattle, Washington, prepared for the National Aeronautics and Space Administration – Langley Research Center, Hampton, Virginia, January 1968.
S.K. Borowski, ‘Bimodal’ Nuclear Thermal Rocket (BNTR) propulsion for future human mars exploration missions, 2003 NASA Seal/Secondary Air System Workshop, NASA Glenn Research Center, Ohio Aerospace Institute (OAI), November 5–6, 2003.
C.R. Joyner, J.E. Philips, R.B. Fowler, S.K. Borowski, TRITON: a TRImodal capable, thrust optimized, nuclear propulsion and power system for advanced space missions, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, Fort Lauderdale, Florida, July 11–14, 2004.
S.P. Fusselman, S. Borowski, P.E. Frye, S.V. Gunn, C.Q. Morrison, NERVA-derived concept for a bimodal nuclear thermal rocket, CP746, Space Technology and Applications International Forum – STAIF, American Institute of Physics, 2005.
S.K. Borowski, D.R. McCurdy, T.W. Packard, Nuclear Thermal Propulsion (NTP): a proven growth technology for human NEO/mars exploration missions, 2012 IEEE Aerospace Conference, NASA Glenn Research Center, Big Sky, MT, March 3–10, 2012.
M.J. Bulman, G. Poth, S.K. Borowski, LANTR engine optimization for lunar missions, in: Space Technology and Applications International Forum – STAIF 2006: 10th Conference on Thermophysics Applications in Microgravity; 23rd Symposium on Space Nuclear Power and Propulsion; 4th Conference on Human/Robotic Technology and the National Vision for Space Exploration; 4th Symposium on Space Colonization; 3rd Symposium on New Frontiers and Future Concepts, No. CP 813, 2006, pp. 847–857.
M.E.M. Stewart, T.M. Krivanek, J.A. Hemminger, M.J. Bulman, 3D reacting flow analysis of lantr nozzles, in: CP813, Space Technology and Applications International Forum – STAIF, American Institute of Physics, 2006.
A.C. Marshall, An Assessment of Reactor Types for Thermochemical Hydrogen Production, Technical Report SAND2002-0513, Sandia National Laboratories, Albuquerque, New Mexico, Livermore, CA, 2002.
D.M. Barton, D.A. Rutherford, A Critical Assembly to Demonstrate the Confinement of a Fissioning uf6 Gas in an Argon Vortex, Technical Report AIAA 91-3501, 1991.
G.H. McLafferty, Gas Core Nuclear Rockets, Technical Report, Aerospace Nuclear Applications Proceedings, Huntsville, 1970.
S.D. Howe, Nuclear Rockets to Mars, Aerospace America, August 2000, pp. 39–43.
T.S. Latham, Nuclear Studies of the Nuclear Light Bulb Rocket Engine, Technical Report NASA Contractor Report – 1315, United Aircraft Corporation, East Hartford, Conn., 1969.
Latham, T., Nuclear Light Bulb, NASA Conference Publication 10079 Nuclear Thermal Propulsion, Cleveland, 1991.
General Dynamics, Nuclear Pulse Vehicle Study Condensed Summary Report (General Dynamics Corp.), Technical Report, NASA George C. Marshall Space Flight Center, Future Projects Office, Huntsville, AL, 1964.
General Atomic, Nuclear Pulse Space Vehicle Study, Vol. I – Summary, Technical Report, NASA George C. Marshall Space Flight Center, Future Projects Office, 1964.
General Atomic, Nuclear Pulse Space Vehicle Study, Vol. III – Conceptual Vehicle Designs and Operational Systems, Technical Report, NASA George C. Marshall Space Flight Center, Future Projects Office, 1964.
General Atomic, Nuclear Pulse Space Vehicle Study, Vol. IV – Mission Velocity Requirements and System Comparison (Supplement), Technical Report, NASA George C. Marshall Space Flight Center, Future Projects Office, 1966.
General Atomic, Nuclear Pulse Space Vehicle Study, Vol. IV – Mission Velocity Requirements and System Comparison, Technical Report, NASA George C. Marshall Space Flight Center, Future Projects Office, 1966.
Reynolds, 1973, Effective specific impulse of external nuclear pulse propulsion system, J. Spacecr., 10, 629, 10.2514/3.61941
T. Kammash, M. Lee, D. Galbraith, B. Cassenti, S. Borowski, R. Bussard, G. Miley, P.-R. Chiang, A. Satsangi, C. Choi, L. Cox, Y. Watanabe, R. Gerwin, R. Zubrin, et al., Fusion Energy in Space Propulsion, vol. 167, AIAA—Progress in Astronautics and Aeronautics, 181 Alexander Bell Drive, Suite 500, Reston, VA, USA, 1995.
F. Romanelli, C. Bruno, G. Regnoli, Assessment of open magnetic fusion for space propulsion, Ariadna Final Report 04/3102 ESTEC Contract 18853/05/NL/MV, European Space Research and Technology Centre, Noordwijk, 2004.
J.F. Santarius, Fusion space propulsion—a shorter time frame than you may think, JANNAF, Joint Army Navy Nasa Air Force Interagency Propulsion Committee, Monterey, December 2005.
Petkow, 2009, Comparative investigation of fusion reactions for space propulsion applications, Trans. Jpn. Soc. Aeronaut. Space Sci. Space Technol. Jpn., 7, Pb_59
Petkow, 2012, Generalized Lawson criterion for magnetic fusion applications in space, Fusion Eng. Des., 87, 30, 10.1016/j.fusengdes.2011.08.008
D. Petkow, R.A. Gabrielli, G. Herdrich, R. Laufer, O. Zeile, A generic model for a transpiration cooled fusion propulsion system, in: 27th International Symposium on Space Technology and Science, Tsukuba, Japan, 2009.
Gamow, 1928, Zur Quantentheorie des Atomkerns, Z. Phys., 51, 204, 10.1007/BF01343196
G. Hale, M. Drosg, et al., Fusion crossection data, Evaluated Nuclear Data File (ENDF), ENDF-6, International Atomic Energy Agency, Department of Nuclear Sciences and Applications, Nuclear Data Section, 2008.
A.S. Pagan, E. Ferrer Gil, R.A. Gabrielli, G. Herdrich, Study of magnetic confinement configurations for fusion space propulsion, Deutscher Luft- und Raumfahrtkongress 2013, Deutsche Gesellschaft für Luft- und Raumfahrt, Stuttgart, Germany, September 2013.
Belyaev, 2005, Observation of neutronless fusion reactions in picosecond laser plasmas, Phys. Rev. E, 72, 026406-1
M. Zucchetti, The zero-waste option for nuclear fusion reactors: advanced fuel cycles and clearance of radioactive materials, Ann. Nucl. Energy (32) (2005) 1584–1593.
El-Guebaly, 2007, Recent developments in environmental aspects of D-3He fuelled fusion devices, Fusion Eng. Des., 82, 351, 10.1016/j.fusengdes.2007.03.011
R.A. Gabrielli, S. Haid, D. Petkow, G. Herdrich, M. Heyn, H.-P. Röser, Effect of nuclear side reactions on magnetic fusion reactors in space, in: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit and 10th International Energy Conversion Engineering Conference, Atlanta, Georgia, 2012, AIAA 2012-3716.
R.A. Gabrielli, S. Haid, D. Petkow, G. Herdrich, H.-P. Röser, System level consequences of nuclear fusion side reactions in working gas drives, in: 29th International Symposium on Space Technology and Science, Nagoya, Japan, June 2013.
Gabrielli, 2014, Two generic concepts for space propulsion based on nuclear thermal nuclear fusion, Acta Astronaut., 101, 129, 10.1016/j.actaastro.2014.03.015
C.H. Williams, L.A. Dudzinski, S.K. Borowski, A. Juhasz, Realizing ‘2001: a space odyssey’: piloted spherical torus nuclear fusion propulsion, in: 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005.
C.H. Williams, S. Borowski, L.A. Dudzinski, A. Juhasz, A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel, in: 34th AIAA/ASME/SAE/ASEE Joint propulsion Conference and Exhibit, NASA, Cleveland, OH, July 13–15, 1998.
Kammash, 1995, Gasdynamic fusion propulsion system for space exploration, J. Propuls. Power, 11, 544, 10.2514/3.23876
Kammash, 1998, Improved physics model for the gasdynamic mirror fusion propulsion system, J. Propuls. Power, 14, 24, 10.2514/2.5261
C.D. Orth, Vehicle for Interplanetary Space Transportation Application Powered by Inertial Confinement Fusion, Technical Report UCRL-LR-110500, Lawrence Livermore National Laboratory, University of California, Livermore, CA, May 2003.
Mallove, 1989
Adrian-Mann-Ground; Space Art, society web site of the British Interplanetary Society (BIS), 2015, 〈http://www.bis-space.com/art/adrian-mann-ground, retrieved 17/3/2015.
G.G. Zelkin, A photon rocket, Priroda (Nature), vol. 11(STL-TR-61-5110-7), 1960 (translated by Z. Jakubski, Advanced Research Technical Information Center, February 1961).
F.M. Huber, Antimaterie-Annihilationsantriebe für interplanetare Raumfahrtmissionen, Dissertation, Universität Stuttgart, Institut für Raumfahrtsysteme, 1994 (in German).