Review of Condition-Based Maintenance Strategies for Offshore Wind Energy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdollahzadeh H, Atashgar K, Abbasi M (2016) Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups. Renew Energy 88:247–261. https://doi.org/10.1016/j.renene.2015.11.022
Alaswad S, Xiang Y (2017) A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliab Eng Syst Saf 157:54–63. https://doi.org/10.1016/j.ress.2016.08.009
Andrawus JA, Watson J, Kishk M (2007a) Modelling system failures to optimise wind turbine maintenance. Wind Energy 31(6):503–522. https://doi.org/10.1002/we.1851
Andrawus JA, Watson J, Kishk M (2007b) Wind turbine maintenance optimisation: principles of quantitative maintenance optimisation. Wind Energy 31(2):101–110. https://doi.org/10.1260/030952407781494467
Andrawus JA, Watson J, Kishk M, Gordon H (2008) Optimisation of wind turbine inspection intervals. Wind Energy 32(5):477–490. https://doi.org/10.1260/030952408786411921
Andrawus JA, Watson J, Kishk M, Adam A (2009) The selection of suitable maintenance strategy for wind turbines. Wind Energy 30(6):471–486. https://doi.org/10.1260/030952406779994141
Azevedo HDM, Araújo AM, Bouchonneau N (2016) A review of wind turbine bearing condition monitoring: state of the art and challenges. Renew Sust Energ Rev 56:368–379. https://doi.org/10.1002/we.1508
Baagøe-Engels V, Stentoft J (2016) Operations and maintenance issues in the offshore wind energy sector: an explorative study. Int J Energy Sect Manage 10(2):245–265. https://doi.org/10.1108/ijesm-04-2015-0012
Bagbanci H; Karmakar D, Guedes Soares C (2012) Review of offshore floating wind turbines concepts. In: Guedes Soares C, Garbatov Y, Sutulo S, Santos TA, (eds) Maritime engineering and technology. pp 553–562. https://doi.org/10.1002/we.442
Bangalore P, Patriksson M (2018) Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines. Renew Energy 115:521–532. https://doi.org/10.1016/j.renene.2017.08.073
Bennouna O, Héraud N, Camblong H, Rodriguez M, Kahyehl MA (2009) Diagnosis and fault signature analysis of a wind turbine at a variable speed. J Risk Reliab 223(1):41–50. https://doi.org/10.1243/1748006xjrr199
Besnard F, Bertling L (2010) An approach for condition-based maintenance optimization applied to wind turbine blades. IEEE Trans Sustain Energy 1(2):77–83. https://doi.org/10.1109/tste.2010.2049452
Besnard F, Fischer K, Tjernberg LB (2013) A model for the optimization of the maintenance support organization for offshore wind farms. IEEE Trans Sustain Energy 4(2):443–450. https://doi.org/10.1109/tste.2012.2225454
Byon E, Ding Y (2010) Season-dependent condition-based maintenance for a wind turbine using a partially observed Markov decision process. IEEE Trans Power Syst 25(4):1823–1834. https://doi.org/10.1109/tpwrs.2010.2043269
Byon E, Pérez E, Ding Y, Ntaimo L (2011) Simulation of wind farm operations and maintenance using discrete event system specification. Simulation 87(12):1093–1117. https://doi.org/10.1177/0037549711376841
Carroll J, McDonald A, McMillan D (2016) Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy 19(6):1107–1119. https://doi.org/10.1002/we.1887
Chang PC, Flatau A, Lui SC (2003) Review paper: health monitoring of civil infrastructure. Struct Health Monit 341–358. https://doi.org/10.1177/1475921703036169
Ciang CC, Lee JR, Bang HJ (2008) Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol 19:1–20. https://doi.org/10.1088/0957-0233/19/12/122001
Costa AM, Fraguela F, Orosa JA, Perez JA (2015) A new procedure for wind energy systems maintenance design. J Renew Sustain Energy 7:043129. https://doi.org/10.1063/1.4928872
Crabtree C, Zappala D, Tavner P (2014) Survey of commercially available condition monitoring systems for wind turbines [technical report]. Durham University School of Engineering and Computing Sciences and the SUPERGEN Wind Energy Technologies Consortium
Dai L, Stålhane M, Utne I (2015) Routing and scheduling of maintenance fleet for offshore wind farms. Wind Energy 39(1):15–30. https://doi.org/10.1260/0309-524x.39.1.15
Dalgic Y, Lazakis I, Dinwoodie I, McMillan D, Revie M (2015) Advanced logistics planning for offshore wind farm operation and maintenance activities. Ocean Eng 101:211–226. https://doi.org/10.1016/j.oceaneng.2015.04.040
Deng MN, Yu YH, Chen L, Zhao HS (2012) Optimal maintenance interval for wind turbine gearbox. Appl Mech Mater 130–134. https://doi.org/10.4028/www.scientific.net/amm.130-134.112
Devriendt C, Magalhães F, Weijtjens W, De Sitter G, Cunha Á, Guillaume P (2014) Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct Health Monit 13(6):644–659. https://doi.org/10.1177/1475921714556568
Ding F, Tian Z (2011) Opportunistic maintenance optimization for wind turbine systems considering imperfect maintenance actions. Int J Reliab Qual Saf Eng 18(5):463–482. https://doi.org/10.1142/s0218539311004196
Ding F, Tian Z (2012) Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds. Renew Energy 45:175–182. https://doi.org/10.1016/j.renene.2012.02.030
Dinwoodie I, McMillan D, Revie M, Lazakis I, Dalgic Y (2013) Development of a combined operational and strategic decision support model for offshore wind. Energy Procedia 35:157–166. https://doi.org/10.1016/j.egypro.2013.07.169
Dinwoodie I, Endrerud OE, Hofmann M, Martin R, Sperstad I (2015) Reference cases for verification of operation and maintenance simulation models for offshore wind farms. Wind Eng 39(1):1–14. https://doi.org/10.1260/0309-524x.39.1.1
Djeziri MA, Benmoussa S, Sanchez R (2018) Hybrid method for remaining useful life prediction in wind turbine systems. Renew Energy 116:173–187. https://doi.org/10.1016/j.renene.2017.05.020
Do P, Canh H, Barros A, Bérenguer C (2015) Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams. Reliab Eng Syst Saf 142:56–67. https://doi.org/10.1016/j.ress.2015.04.022
Erguido A, Marquez AC, Castellano E, Fernandez JFG (2017) A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms. Renew Energy 114:843–856. https://doi.org/10.1016/j.renene.2017.07.017
Fiber Optic Sensors (2018) Available from: http://www.scaime.com/en/117/products-services/fiber-optic-sensors.html . Accessed 14.05.18
Florian M, Sørensen JD (2015) Planning of operation & maintenance using risk and reliability based methods. Energy Procedia 80:357–364. https://doi.org/10.1016/j.egypro.2015.11.440
Fugate ML, Sohn H, Farrar CR (2001) Vibration-based damage detection using statistical process control. Mech Syst Signal Process 15:707–721. https://doi.org/10.1006/mssp.2000.1323
Ghamlouch H, Fouladirad M, Grall A (2017) The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2017.10.001
Gintautas T, Sørensen JD, Vatne SR (2016) Towards a risk-based decision support for offshore wind turbine installation and operation & maintenance. Energy Procedia 94:207–217. https://doi.org/10.1016/j.egypro.2016.09.225
Global Wind Energy Council (GWEC) (2015) Global wind report e annual market update 2014, March
Guasp MR, Llinares JP, Alarcon VC, Santos FV, Sánchez MP, Daviu JA, Panadero RP, Cruz JP, Folch JR (2013) Diagnosis of induction machines under non-stationary conditions: concepts and tools. In: Proceedings of 2013 IEEE Workshop on Electrical Machines Design Control and Diagnosis (WEMDCD). pp 220–231. https://doi.org/10.1109/wemdcd.2013.6525182
Guedes Soares C, Bhattacharjee J, Karmakar D (2014) Overview and prospects for development of wave and offshore wind energy. Brodogradnja 65(2):87–109
Haddad G, Sandborn PA, Pecht MG (2014) Using maintenance options to maximize the benefits of prognostics for wind farms. Wind Energy 17(5):775–791. https://doi.org/10.1002/we.1610
Hagen B, Simonsen I, Hofmann M, Muskulus M (2013) A multivariate Markov weather model for O&M simulation of offshore wind parks. Energy Procedia 35:137–147. https://doi.org/10.1016/j.egypro.2013.07.167
Henao H, Capolino GA, Fernandez-Cabanas M, Filippetti F, Bruzzese C, Strangas E (2014) Trends in fault diagnosis for electrical machines: a review of diagnostic techniques. IEEE Ind Electron Mag 8(2):31–42. https://doi.org/10.1109/mie.2013.2287651
Herbert GMJ, Iniyan S, Goic R (2010) Performance, reliability and failure analysis of wind farm in a developing country. Renew Energy 35(12):2739–2751. https://doi.org/10.1016/j.renene.2010.04.023
Hoang A, Do P, Iung B (2016) Investigation on the use of energy efficiency for condition-based maintenance decision-making. IFAC-Papers Online 49-28:73–78. https://doi.org/10.1016/j.ifacol.2016.11.013
Hyers RW, Mcgowan JG, Sullivan KL, Manwell JF, Syrett BC (2006) Condition monitoring and prognosis of utility scale wind turbines. Mater Sci Eng Energy Syst 1:187–203. https://doi.org/10.1179/174892406x163397
Igba J, Alemzadeh K, Anyanwu-Ebo I, Gibbons P, Friis J (2013) A systems approach towards reliability-centred maintenance (RCM) of wind turbines. Procedia Comput Sci 16:814–823. https://doi.org/10.1016/j.procs.2013.01.085
Igba J, Alemzadeh K, Henningsen K, Durugbo C (2014) Effect of preventive maintenance intervals on reliability and maintenance costs of wind turbine gearboxes. Wind Energy 18:2013–2024. https://doi.org/10.1002/we.1801
Jardine AKS, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20:1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012
Jonge B, Teunter R, Tinga T (2017) The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance. Reliab Eng Syst Saf 158:21–30. https://doi.org/10.1016/j.ress.2016.10.002
Joshuva A, Sugumaran V (2017) A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first. ISA Trans 67:160–172. https://doi.org/10.1016/j.isatra.2017.02.002
Kahrobaee S, Asgarpoor S (2013) A hybrid analytical-simulation approach for maintenance optimization of deteriorating equipment: case study of wind turbines. Electr Power Syst Res 104:80–86. https://doi.org/10.1016/j.epsr.2013.06.012
Kaminski PC (1995) The approximate location of damage though the analysis of natural frequencies with artificial neural networks. J Process Mech Eng 209:117–125. https://doi.org/10.1243/pime_proc_1995_209_238_02
Kang J, Sun L, Guedes Soares C (2016) Fault tree analysis of the failure of floating offshore wind turbines support structures and blade systems. In: Soares G (ed) Progress in renewable energies offshore. Taylor & Francis, London, pp 741–749. https://doi.org/10.1201/9781315229256-87
Kang J, Li M, Sun L, Wang M (2017a) Preventative maintenance optimization for offshore wind turbine gearbox. In: Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference. pp 626-630
Kang J, Sun L, Sun H, Wu C (2017b) Risk assessment of floating offshore wind turbine based on correlation-FMEA. Ocean Eng 129:382–388. https://doi.org/10.1016/j.oceaneng.2016.11.048
Keizer MO, Flapper SD, Teunter R (2017) Condition-based maintenance policies for systems with multiple dependent components: a review. Eur J Oper Res 261:405–420. https://doi.org/10.1016/j.ejor.2017.02.044
Kirkegaard PH (1993) The use of neural networks for damage detection and location in a steel member. In: Third International Conference on the Application of Artificial Intelligence of Civil and Structural Engineering, Edingburgh, Scotland. https://doi.org/10.4203/ccp.16.1.1
Kragh KA, Hansen MH, Mikkelsen T (2011) Improving yaw alignment using spinner based lidar. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida. https://doi.org/10.2514/6.2011-264
Kühn M, Bierbooms WAAM, Van Bussel GJW, Cockerill TT, Harrison R, Ferguson MC (1999) Towards a mature offshore wind energy technology —guidelines from the opti-OWECS project. Wind Energy 2(1):25–58. https://doi.org/10.1002/(sici)1099-1824(199901/03)2:1<25::aid-we17>3.0.co;2-8
Kumar S, Goyal D, Dang R, Dhamib S, Pabla BS (2018) Condition based maintenance of bearings and gears for fault detection – a review. Mater Today: Proceed 5:6128–6137. https://doi.org/10.1016/j.matpr.2017.12.219
Lau BCP, Ma EWM, Pecht M (2012) Review of offshore wind turbine failures and fault prognostic methods. In: IEEE Prognostics & System Health Management Conference. Beijing. https://doi.org/10.1109/phm.2012.6228954
Le B, Andrews J (2016) Modelling wind turbine degradation and maintenance. Wind Energy 19(4):571–591. https://doi.org/10.1002/we.1851
Lee K, Aihara A, Puntsagdash G, Kawaguchi T, Sakamoto H, Okuma M (2017) Feasibility study on a strain based deflection monitoring system for wind turbine blades. Mech Syst Signal Process 82:117–129. https://doi.org/10.1016/j.ymssp.2016.05.011
Leigh JM, Dunnett SJ (2016) Use of Petri nets to model the maintenance of wind turbines. Qual Reliab Eng Int 32(1):167–180. https://doi.org/10.1002/qre.1737
Leite GNP, Araújo AM, Rosas PAC (2018) Prognostic techniques applied to maintenance of wind turbines: a concise and specific review. Renew Sust Energ Rev 81(2):1917–1925. https://doi.org/10.1016/j.rser.2017.06.002
Li H, Deloux E, Dieulle L (2016) A condition-based maintenance policy for multi-component systems with Lévy copulas dependence. Reliab Eng Syst Saf 149:44–55. https://doi.org/10.1016/j.ress.2015.12.011
Lindroth S, Leijon M (2011) Offshore wave power measurements – a review. Renew Sustain Energy Rev 15(9):4274–4285. https://doi.org/10.1016/j.rser.2011.07.123
Liu WY, Tang BP, Han JG, Lu XN, Hu NN, He ZZ (2015) The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review. Renew Sust Energ Rev 44:466–472. https://doi.org/10.1016/j.rser.2014.12.005
Liu B, Liang Z, Parlikad AK, Xie M, Kuo W (2017a) Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model. Reliab Eng Syst Saf 168:200–209. https://doi.org/10.1016/j.ress.2017.04.010
Liu B, Wu S, Xie M, Kuo W (2017b) A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost. Eur J Oper Res 263:879–887. https://doi.org/10.1016/j.ejor.2017.05.006
Liu K, Yan RJ, Guedes Soares C (2018a) An improved model updating technique based on modal data. Ocean Eng 154:277–287. https://doi.org/10.1016/j.oceaneng.2018.02.011
Liu K, Yan RJ, Guedes Soares C (2018b) Optimal sensor placement and assessment for modal identification. Ocean Eng 165:209–220. https://doi.org/10.1016/j.oceaneng.2018.07.034
Liu K, Yan RJ, Guedes Soares C (2018c) Damage identification in offshore jacket structures based on modal flexibility. Ocean Eng 170:171–185. https://doi.org/10.1016/j.oceaneng.2018.10.014
López-Higuera JM, Cobo LR, Incera AQ, Cobo A (2011) Fiber optic sensors in structural health monitoring. J Lightwave Technol 29(4):587–608. https://doi.org/10.1364/OFC.2010.OWL4
Lou J, Namburu M, Pattipati K (2003) Model-based prognostic techniques. In: Proceedings AUTOTESTCON. IEEE Systems Readiness Technology Conference. Anaheim. https://doi.org/10.1109/autest.2003.1243596
Lu Y, Sun L, Kang J, Sun H, Zhang X (2017) Opportunistic maintenance optimization for offshore wind turbine electrical and electronic system based on rolling horizon approach. J Renew Sustain Energy 9:033307. https://doi.org/10.1063/1.4989640
Lu Y, Sun L, Zhang X, Feng F, Kang J, Fu G (2018) Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Appl Ocean Res 74:69–79. https://doi.org/10.1016/j.apor.2018.02.016
Mares C, Surace C (1996) An application of genetic algorithms to identify damage in elastic structures. J Sound Vib 195(2):195–215. https://doi.org/10.1006/jsvi.1996.0416
Márquez FPG, Tobias AM, Pérez JMP, Mayorkinos P (2012) Condition monitoring of wind turbines: techniques and methods. Renew Energy 46:169–178. https://doi.org/10.1016/j.renene.2012.03.003
Martinez-Luengo M, Kolios A, Wang L (2016) Structural health monitoring of offshore wind turbines: a review through the statistical pattern recognition paradigm. Renew Sust Energ Rev 64:91–105. https://doi.org/10.1016/j.rser.2016.05.085
Martins D, Muraleedharan G, Guedes Soares C (2015) Weather window analysis of a site off Portugal. In: Soares G, Santos (eds) Maritime technology and engineering. Taylor & Francis, London, pp 1329–1337. https://doi.org/10.1201/b17494-179
May A, McMillan D, Thöns S (2014) Economic analysis of condition monitoring systems for offshore wind turbine sub-systems. IET Renew Power Gener 9(8):900–907. https://doi.org/10.1049/iet-rpg.2015.0019
Mérigaud A, Ringwood JV (2016) Condition-based maintenance methods for marine renewable energy. Renew Sust Energ Rev 66:53–78. https://doi.org/10.1016/j.rser.2016.07.071
Morthorst PE, Kitzing L (2016) Economics of building and operating offshore wind farms. Offshore Wind Farms - Technologies, Design and Operation, pp 9–27. https://doi.org/10.1016/B978-0-08-100779-2.00002-7
Munoz CQG, Jimenez AA, Marquez FPG (2018) Wavelet transforms and pattern recognition on ultrasonic guides waves for frozen surface state diagnosis. Renew Energy 116:42–54. https://doi.org/10.1016/j.renene.2017.03.052
Murata T (1989) Petri nets: properties, analysis and applications. Proceed IEEE 77(4):541–580. https://doi.org/10.1109/5.24143
Nejad AR, Gao Z, Moan T (2014) Fatigue reliability-based inspection and maintenance planning of gearbox components in wind turbine drivetrains. Energy Procedia 53:248–257. https://doi.org/10.1016/j.egypro.2014.07.234
Netland O, Sperstad IB, Hofmann M, Skavhaug A (2014) Cost-benefit evaluation of remote inspection of offshore wind farms by simulating the operation and maintenance phase. Energy Procedia 53(C):239–247. https://doi.org/10.1016/j.egypro.2014.07.233
Ng C, Ran L (2016) Introduction to offshore wind energy. Offshore Wind Farms - Technologies, Design and Operation, pp 3–8. https://doi.org/10.1016/b978-0-08-100779-2.00001-5
Nie M, Wang L (2013) Review of condition monitoring and fault diagnosis technologies for wind turbine gearbox. Proceed Procedia 11:87–90. https://doi.org/10.1016/j.procir.2013.07.018
Nielsen JS, Sørensen JD (2014) Methods for risk-based planning of O&M of wind turbines. Energies 7(10):6645–6664. https://doi.org/10.3390/en7106645
Nielsen JS, Van de Pieterman RP, Sørensen JD (2014) Analysis of pitch system data for condition monitoring. Wind Energy 17:435–449. https://doi.org/10.1002/we.1586
O’Connor M, Lewis T, Dalton G (2013) Weather window analysis of Irish west coast wave data with relevance to operations and maintenance of marine renewables. Renew Energy 52:57–66. https://doi.org/10.1016/j.renene.2012.10.021
Ogidi OO, Barendse PS, Khan MA (2016) Fault diagnosis and condition monitoring of axial-flux permanent magnet wind generators. Electr Power Syst Res 136:1–7. https://doi.org/10.1016/j.epsr.2016.01.018
Ossai CI, Boswell B, Davies IJ (2016) A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components. Renew Energy 96:775–783. https://doi.org/10.1016/j.renene.2016.05.022
Papasalouros D, Tsopelas N, Anastasopoulos A, Kourousis D, Lekou DJ, Mouzakis F (2013) Acoustic emission monitoring of composite blade of NM48/750 NEG-MICON wind turbine. J Acoust Emission 31(1):36–49
Pattison D, Segovia Garcia M, Xie W, Quail F, Revie M, Whitfield R I, Irvine I (2016) Intelligent integrated maintenance for wind power generation. Wind Energy 19(3): 547–562. https://doi.org/10.1002/we.1850
Pérez E, Ntaimo L, Ding Y (2015) Multi-component wind turbine modeling and simulation for wind farm operations and maintenance. Simulation 91(4):360–382. https://doi.org/10.1177/0037549715572490
Ramírez JGR, Sørensen JD (2012) Risk-based inspection planning optimisation of offshore wind turbines. Struct Infrastruct Eng 8(5):473–481. https://doi.org/10.1080/15732479.2010.539064
Rasmekomen N, Parlikad AK (2016) Condition-based maintenance of multi-component systems with degradation state-rate interactions. Reliab Eng Syst Saf 148:1–10. https://doi.org/10.1016/j.ress.2015.11.010
Réthoré PE, Fuglsang P, Larsen GC, Buhl T, Larsen TJ, Madsen HA (2014) TopFarm: multi-fidelity optimization of offshore wind farm. Wind Energy 17:1797–1816. https://doi.org/10.1002/we.1667
Rumsey MA, Paquette J, White JR, Werlink RJ, Beattie AG, Pitchford CW (2008) Experimental results of structural health monitoring of wind turbine blades. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia. https://doi.org/10.2514/6.2008-1348
Salameh JP, Cauet S, Etien E, Sakout A, Rambault L (2018) Gearbox condition monitoring in wind turbines: a review. Mech Syst Signal Process 11:251–264. https://doi.org/10.1016/j.ymssp.2018.03.052
Salvação N, Guedes Soares C (2018) Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 145:276–287. https://doi.org/10.1016/j.energy.2017.12.101
Santos FV, Guasp MR, Henao H, Sánchez MP, Panadero RP (2014a) Diagnosis of rotor and stator asymmetries in wound-rotor induction machines under nonstationary operation through the instantaneous frequency. IEEE Trans Ind Electron 61(9):4947–4959. https://doi.org/10.1109/tie.2013.2288192
Santos FP, Teixeira A P, Guedes Soares C (2014b) Influence of logistic strategies on the availability and maintenance costs of an offshore wind turbine. In: Safety, Reliability and Risk Analysis: Beyond the Horizon. pp 791–799. https://doi.org/10.1201/b15938-120
Santos FP, Teixeira AP, Guedes Soares C (2015a) An age-based preventive maintenance for offshore wind turbines. In: Safety and Reliability: Methodology and Applications. Nowakowski et al. (eds). pp 1147–1155. https://doi.org/10.1201/b17399-161
Santos FP, Teixeira AP, Guedes Soares C (2015b) Modelling and simulation of the operation and maintenance of offshore wind turbines. J Risk Reliab 229(5):385–393. https://doi.org/10.1177/1748006X15589209
Santos FP, Teixeira AP, Guedes Soares C (2015c) Review of wind turbine accident and failure data. In: Guedes Soares C (ed) Renewable energies offshore. Taylor & Francis Group, London, pp 953–959. https://doi.org/10.1201/b18973-134
Santos FP, Teixeira AP, Guedes Soares C (2016) Operation and maintenance of floating offshore wind turbines. In: Castro-Santos, Diaz-Casas V (eds) Floating offshore wind farms-L. Springer International Publishing, Switzerland, pp 181–193. https://doi.org/10.1007/978-3-319-27972-5_10
Santos FP, Teixeira AP, Guedes Soares C (2018a) Maintenance planning of an offshore wind turbine using stochastic petri nets with predicates. J Offshore Mech Arct Eng 140:021904–021901. https://doi.org/10.1115/1.4038934
Santos FP, Teixeira AP, Guedes Soares C (2018b) Modelling, simulation and optimization of maintenance cost aspects on multi-unit systems by stochastic Petri nets with predicates. Simulation: Trans Soc Model Simul Int. https://doi.org/10.1177/0037549718782655
Sarker BR, Faiz TI (2016) Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renew Energy 85:104–113. https://doi.org/10.1016/j.renene.2015.06.030
Scheu MN, Matha D, Hofmann M, Muskulus M (2012a) Maintenance strategies for large offshore wind farms. Energy Procedia 24:281–288. https://doi.org/10.1016/j.egypro.2012.06.110
Scheu MN, Matha D, Muskulus M (2012b) Validation of a Markov-based weather model for simulation of O&M for offshore wind farms. In: The Twenty-second International Offshore and Polar Engineering Conference. Rhodes
Schlechtingen M, Santos IF, Achiche S (2013) Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description. Appl Soft Comput 13(1):259–270. https://doi.org/10.1016/j.asoc.2012.08.033
Schroeder K, Ecke W, Apitz J, Lembke E, Lenschow G (2006) A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade. Meas Sci Technol 17(5):1167–1172. https://doi.org/10.1117/12.623990
Schulz MJ, Sundaresan MJ (2006) Smart sensor system for structural condition monitoring of wind turbines. National Renewable Energy Laboratory, Denver. https://doi.org/10.2172/891105
Shafiee M (2015) Maintenance logistics organization for offshore wind energy: current progress and future perspectives. Renew Energy 77:182–193. https://doi.org/10.1016/j.renene.2014.11.045
Shafiee M, Finkelstein M (2015a) An optimal age-based group maintenance policy for multiunit degrading systems. Reliab Eng Syst Saf 134:230–238. https://doi.org/10.1016/j.ress.2014.09.016
Shafiee M, Finkelstein M (2015b) A proactive group maintenance policy for continuously monitored deteriorating systems: application to offshore wind turbines. Proceed Instit Mech Eng, Part O: J Risk Reliab 229(5):373–384. https://doi.org/10.1177/1748006x15598915
Shafiee M, Sørensen JD (2017) Maintenance optimization and inspection planning of wind energy assets: models, methods and strategies. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2017.10.025
Shafiee M, Finkelstein M, Bérenguer C (2015) An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks. Reliab Eng Syst Saf 142:463–471
Sheng S (2015) Wind turbine gearbox reliability database, condition monitoring, and O&M research update. National Renewable Energy Laboratory (NREL), USA
Sheu SH, Zhang ZG (2013) An optimal age replacement policy for multi-state systems. IEEE Trans Reliab 62(3):722–735. https://doi.org/10.1109/tr.2013.2270427
Shi F, Patton RJ (2014) A robust adaptive approach to wind turbine pitch actuator component fault estimation. In: Proceedings of the 2014 UKACC International Conference on Control. pp 468–473. https://doi.org/10.1109/CONTROL.2014.6915185
Sinha Y, Steel JA, Andrawus JA, Gibson K (2014) Significance of effective lubrication in mitigating system failures - a wind turbine gearbox case study. Wind Energy 38(4):441–450. https://doi.org/10.1260/0309-524x.38.4.441
Sobral J, Ferreira L (2010) Development of a new approach to establish inspection frequency in a RBI assessment. In: European Safety and Reliability Conference. Rhodes
Sørensen JD (2009) Framework for risk-based planning of operation and maintenance for offshore wind turbines. Wind Energy 12(5):493–506. https://doi.org/10.1002/we.344
Sparrevik P (2014) Monitoring offshore wind turbine foundations. Oceanology International, London, pp 1–26. https://doi.org/10.4043/29041-ms
Sun L, Lu Y, Zhang X (2016) A review on damage identification and structural health monitoring for offshore platform. In: Proceedings of the ASME 2016 35th International Conference on Ocean. Offshore and Arctic Engineering, Busan, Korea https://doi.org/10.1115/omae2016-54561
Sundaresan MJ, Schulz MJ, Ghoshal A (2002) Structural health monitoring static test of a wind turbine blade. Technical report, National Renewable Energy Laboratory. Available from: https://www.nrel.gov/docs/fy02osti/28719.pdf
Tavner PJ, Xiang J, Spinato F (2007) Reliability analysis for wind turbines. Wind Energy 10(1):1–18. https://doi.org/10.1002/we.204
Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G (2014) Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7:2595–2630. https://doi.org/10.3390/en7042595
Teng W, Ding X, Zhang X, Liu Y, Ma Z (2016) Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform. Renew Energy 93:591–598. https://doi.org/10.1016/j.renene.2016.03.025
Thons S, McMillan D (2014) Condition monitoring benefit for offshore wind turbines. Reliab Model Anal Smart Power Syst:169–182. https://doi.org/10.1007/978-81-322-1798-5_11
Tian Z, Jin T, Wu B, Ding F (2011) Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renew Energy 36:1502–1509. https://doi.org/10.1016/j.renene.2010.10.028
Uzunoglu E, Karmakar D, Guedes Soares C (2016) Floating offshore wind platforms. In: Castro-Santos L, Diaz-Casas V (eds) Green energy and technology. Springer International Publishing, Switzerland, pp 53–76. https://doi.org/10.1007/978-3-319-27972-5_4
Verbert K, De Schutter B, Babuška R (2017) Timely condition-based maintenance planning for multi-component systems. Reliab Eng Syst Saf 159:310–321. https://doi.org/10.1016/j.ress.2016.10.032
Wang KS, Sharma VS, Zhang ZY (2014) SCADA data based condition monitoring of wind turbines. Adv Manuf 2(1):61–69. https://doi.org/10.1007/978-3-319-20463-5_16
Welte TM, Wang K (2014) Models for lifetime estimation: an overview with focus on applications to wind turbines. Advances in Manufacturing 2:79–87. https://doi.org/10.1007/s40436-014-0064-3
WindEurope (2017) Wind in power-2016 European statistics. https://www.windeuropeorg/about-wind/statistics/european/wind-in-power-2016/ . February 9
Wu Y, Zhao H (2010) Optimization maintenance of wind turbines using Markov decision processes. In: International Conference on Power System Technology. Hangzhou, China. https://doi.org/10.1109/powercon.2010.5666092
Wu X, Li Y, Li F, Yang Z, Teng W (2012) Adaptive estimation-based leakage detection for a wind turbine hydraulic pitching system. IEEE/ASME Trans Mechatron 17(5):907–914. https://doi.org/10.1109/tmech.2011.2142400
Wymore ML, Van Dam JE, Ceylan H, Qiao D (2015) A survey of health monitoring systems for wind turbines. Renew Sust Energ Rev 52:976–990. https://doi.org/10.1016/j.rser.2015.07.110
Yang X, Li J, Liu W, Guo P (2011) Petri net model and reliability evaluation for wind turbine hydraulic variable pitch systems. Energies 4(6):978–997. https://doi.org/10.3390/en4060978
Yang W, Court R, Jiang J (2013) Wind turbine condition monitoring by the approach of SCADA data analysis. Renew Energy 53(C):365–376. https://doi.org/10.1016/j.renene.2012.11.030
Yeter B, Garbatov Y, Guedes Soares C (2015) Fatigue damage assessment of fixed offshore wind turbine tripod support structures. Eng Struct 101:518–528. https://doi.org/10.1016/j.engstruct.2015.07.038
Yeter B, Garbatov Y, Guedes Soares C (2016) Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures. Int J Fatigue 87:71–80. https://doi.org/10.1016/j.ijfatigue.2016.01.007
Zhang ZY, Wang KS (2014) Wind turbine fault detection based on SCADA data analysis using ANN. Adv Manuf 2(1):70–78. https://doi.org/10.1007/s40436-014-0061-6
Zhao R, Shen W, Knudsen T, Bak T (2012) Fatigue distribution optimization for offshore wind farms using intelligent agent control. Wind Energy 15(7):927–944. https://doi.org/10.1002/we.1518