Review and reflections about pulsatile ventricular assist devices from history to future: concerning safety and low haemolysis—still needed

Journal of Artificial Organs - Tập 23 - Trang 303-314 - 2020
Inge Köhne1
1Department for Health Services Research, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

Tóm tắt

Since the first use of a ventricular assist device in 1963 many extracorporeal and implantable pulsatile blood pumps have been developed. After the invention of continuous flow blood pumps the implantable pulsatile pumps are not available anymore. The new rotary pumps spend a better quality of life because many of the patients can go home. Nevertheless, the extracorporeal pulsatile pumps have some advantages. They are low-cost systems, produce less haemolysis and heart-recovery can be tested easily. Pump failure is easy to realize because the pumps can be observed visually. Pump exchange can be done easily without any chirurgic surgery. As volume displacement pumps they can produce high blood pressure, so they are the only ones suitable for pediatric patients. Therefore, they are indispensable for clinical use today and in the future. In this work, nearly all pulsatile blood pumps used in clinical life are described.

Tài liệu tham khảo

Müller J, Wallukat G, Wenig YG, et al. Weaning from mechanical support after complete recovery in patients with idiopathic dilated cardiomyopathy. In: Hetzer R, Henning E, Loebe M, editors. Mechanical circulatory support: in children, towards myocardial recovery, permanent. Darmstadt: Dr. Dietrich Steinkopff Verlag GmbH & Co. KG; 1997. Valika AA, Cotts W. A review of long-term mechanical circulatory support as destination therapy: evolving paradigms for treatment of advanced heart failure. ISRN Transplantation. 2013. https://doi.org/10.5402/2013/714373. DeBakey ME. Left ventricular bypass pump for cardiac assistance. Am J Cardio. 1971;27:3–11. Liotta D. Early clinical application of assisted circulation. Tex Heart Inst J. 2002;29(3):229–30. DeBakey ME. Development of mechanical heart devices. Ann Thorac Surg. 2005;79:2228–31. Wolner E, Deutsch M, Losert U, et al. Clinical application of the ellipsoid left heart asisst device. Artif Organs. 1978;2(3):268–72. Wieselthaler GM, Schima H, Zimpfer D, et al. Forty years of development, experimental evaluation and clinical application of mechanical circulatory support at the Medical University of Vienna. Wien Klin Wochenschr. 2008;120(Suppl 2):15–20. Moritz A, Rokitansky A, Schima H, et al. Succesful bridge transplantation with the Vienna artificial heart. Wien Klin Wochenschr. 1991;103(4):122–6. Pennington DG, McBride LR, Swartz MT, et al. Use of the Pierce-Donachy ventricular assist device in patients with cardiogenic shock after cardiac operations. Ann Thorac Surg. 1989;47:130–5. Farrar DJ, Hill JD. Univentricular and Biventricular Thoratec VAD Support as a Bridge to Transplantation. Ann Thorac Surg. 1993;55:276–82. Wu EL, Stevens MC, Pauls JP, et al. First-generation ventricular assist devices. In: Gregory SD, Stevens MC, Fraser JF, editors. Mechanical Circulatory and Respiratory Support. Academic Press: London; 2018. p. 93–115. Thuaudet S. The Medos ventricular assist device system. Perfusion. 2000;15:337–43. Reiß N, El-Banayosy A, Arusoglu L, et al. Mechanische Kreislaufunterstützung Mit Dem Hia-Medos-System—Erfahrungen Mit Drei Verschiedenen Ventrikelgrössen. Biomed Techn. 2001;46:146–7 Ergänzungsband 1. Werkkala K, Jokinen JJ, Soininen L, et al. Clinical durability of the CARMEDA bioactive surface in EXCOR ventricular assist device pumps. ASAIO. 2016;62:139–42. Hetzer R, Kaufmann F, Delmo Walter EM. Mechanische Herzunterstützungssysteme. In: Kramme R, editor. Medizintechnik. Springer Verlag: Berlin; 2017. p. 555–577. Hennig E, Zartnak F, Schiessler A, Hetzer R. Das Berliner Herzunterstützungssystem. Berlin: Deutsches Herzzentrum; 1990. Kaufmann F, Hennig E, Loebe M, Hetzer R. Das Berlin heart system. Berlin: Deutsches Herzzentrum; 1996. Drews T, Loebe M, Hennig E, et al. The ‘Berlin Heart’ assist device. Perfusion. 2000;15:387–96. Rukosujew A, Hoffmeier A, Tjan TDT. Parakorporale Systeme einschließlich Implantationstechniken: Berlin Heart EXCOR® VAD. In: Boeken U, Assmann A, Born F, et al., editors. Mechanische Herz-Kreislauf-Unterstützung. 2nd ed. Springer-Verlag GmbH: Berlin; 2017. p. 80–89. Chopski SG, Moskowitz WB, Stevens RM, et al. Review article—mechanical circulatory support devices for pediatric patients with congenital heart disease. Artif Organs. 2017;41(1):E1–E14. Nishida M. Artificial hearts—recent progress: republication of the article published in the Japanese Journal of Artificial Organs. J Artif Organs. 2017;20(3):187–93. Berlin Heart. Press release: Longest support time with the EXCOR Pediatric ventricular assisst device, August 2012. Berlin Heart. Press release: Berlin Heart unterstützt nun auch Kinder in Südkorea und Kroatien, January 2018. Samuels LE, Holmes EC, Ganwood P, et al. Initial experience with the Abiomed AB5000 ventricular assist device system. Ann Thorac Surg. 2005;80(1):309–12. Zhang L, Kapetanakis EI, Cooke RH, et al. Bi-Ventricular circulatory support with the Abiomed AB5000 system in a patient with idiopathic refractory ventricular fibrillation. Ann Thorac Surg. 2007;83(1):298–300. Wassenberg PAJ. The Abiomed BVS 5000 biventricular support system. Perfusion. 2000;15:369–71. Dekkers RJ, FitzGerald DJ, Couper GS. Five-year clinical experience with Abiomed BVS 5000 as a ventricular assist device for cardiac failure. Perfusion. 2001;16:13–8. Kustosz R, Nawrat Z, Drzazga M, et al. Early results of experimental clinical usage of polish ventricle assist device—POLVAD-II. In: Akutsu T, Koyanagi H, editors. Heart replacement—artificial heart 5. Berlin: Springer Verlag; 1996. p. 187–192. Malota Z, Sadowski W, Krzyskow M, et al. The application of bileaflet mechanical heart valves in the polish ventricular assist device: physical and numerical study and first clinical usage. Artif Organs. 2016;40(3):252–60. Sato N, Mohri H, Sezai Y, et al. Multi-institutional evaluation of the Tokyo university ventricular assist system. ASAIO Transactions. 1990;36:M708–M711711. Nishimura T. Current status of extracorporeal ventricular assist devices in Japan. J Artif Organs. 2014. https://doi.org/10.1007/s10047-014-0779-8. Saito S, Matsumiya G, Sakaguchi T, et al. Fifteen-year experience with Toyobo paracorporeal left ventricular assist system. J Artif Organs. 2009;12:27–34. Takano H, Nakatani T. Ventricular assist systems: experience in Japan with Toyobo pump and zeon pump. Ann Thorac Surg. 1996;61:317–22. Xuejun X, Ruixin F, Anheng C. The clinical trial of pneumatic pump (Luo-Ye pump) as left ventricular assist device. South China J Cardiol. 2002;8(1):43–5. Gu K, Chang Y, Gao B, et al. Development of ventricular assist devices in China: present status, opportunities and challenges. Eur J Cardio-Thorac Surg. 2014;46:179–85. DeBakey ME, Liotta D, Hall CW. Left-heart bypass using an implantable blood pump. In: Mechanical devices to assist the failing heart. Proceedings of a Conference Sponsored by The Committee on Trauma, Division of Medical Sciences, National Academy of Sciences-National Research Council. Washington; 1966. p. 223–239. Norman JC. An intracorporal (abdominal) left ventricular assist device [Alvad], XXX: clinical readiness and initial trials in man. Cardiovasc Dis Bull Tex Heart Inst. 1976;3(3):249–88. Norman JC, Duncan MD, Frazier OH, et al. Intracorporeal (Abdominal) left ventricular assist devices or partial artificial hearts: a five-year clinical experience. Arch Surg. 1981;116(11):1441–5. Wheeldon DR, Jansen PGM, Portner PM. The Novacor electrical implantable left ventricular assist system. Perfusion. 2000;15:355–61. Wheeldon DR, LaForge DH, Lee J, et al. Novacor left ventricular assist system long-term performance: comparison of clinical experience with demonstrated in vitro reliability. ASAIO J. 2002;48:546–51. Poirier VL. The heartmate left ventricular assist system: worldwide clinical results. Eur J Cardio-Thorac Surg. 1997;11(Suppl):39–44. Frazier OH, Myers TJ, Radovančević B. The HeartMate® left ventricular assist system. Overview end 12-Year experience. Tex Heart Inst J. 1998;25:265–71. Frazier OH. First use of an untethered, vented electric left ventricular assist device for long-term support. Circulation. 1994;89(6):2908–14. Frazier OH, Rose EA, Oz MC, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiov Surg. 2001;122:1186–95. Samuels LE, Holmes EC, Hagan K, et al. The thoratec implantable ventricular assist device(ivad): initial clinical experience. Heart Surg Forum. 2006; 9(4):E690-2. Slaughter MS, Tsui SS, El-Banayosy A, et al. Results of a multicenter clinical trial with the Thoratec Implantable Ventricular Assist Device. J Thorac Cardiov Surg. 2007;133(6):1573–80. Mehta SM, Pae WE, Rosenberg G, et al. The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann Thorac Surg. 2001;71:156–61. Mehta SM, Silber D, Boehmer JP, et al. Report of the first US patient successfully supported long term with the LionHeart completely implantable left ventricular assist device system. ASAIO J. 2006;52:e31–e3232. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Card. 2009;54(4):312–21. Holman WL, Naftel DC, Eckert CE, et al. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011. J Thorac Cardiov Surg. 2013;146(2):437–41. Giridharan GA, Koenig SC, Soucy KG, et al. Hemodynamic changes and retrogate flow in lvad failure. ASAIO J. 2015;61:282–91. Kormos RL, McCall M, Althouse A, et al. Left ventricular assist device malfunctions: it is more than just the pump. Circulation. 2017;136:1714–25. Throckmorton AL, Patel-Raman SN, Fox CS, et al. Beyond the VAD: human factors engineering for mechanically assisted circulation in the 21st century. Artif Organs. 2016;40(6):539–48. Burrell AJC, Salamonsen RF, Murphy DA. Complications of mechanical circulatory and respiratory support. In: Gregory SD, Stevens MC, Fraser JF, editors. Mechanical circulatory and respiratory support. Academic Press: London; 2018. p. 495–528. Patel SR, Oh KT, Ogriki T, et al. Cessation of continuous flow left ventricular assist device-related gastrointestinal bleeding after heart transplantation. ASAIO J. 2018;64:191–5. Holley CT, Harvey L, Roy SS, et al. Gastrointestinal bleeding during continuous-flow left ventricular assist device support is associated with lower rates of cardiac transplantation. ASAIO J. 2015;61:635–9. Truss WD, Weber F, Pamboukian SV, et al. Early implementation of video capsule enteroscopy in patients with left ventricular assist device and obscure gastrointestinal bleeding. ASAIO J. 2016;62:40–5. Son AY, Zhao L, Reyentovich A, et al. Intractable hematuria after left ventricular assist device implantation: can lessons learned from gastrointestinal bleeding be applied? ASAIO J. 2016;62:e8–e12. Kitamura T, Torii S, Oka N, et al. Seventeen-month-long paracorporeal biventricular mechanical support as a bridge to transplantation for severe dilated cardiomyopathy. J Artif Organs. 2015;18:92–4. Uriel N, Pak SW, Jorde UP, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56(15):1207–13. Meyer AL, Malehsa D, Budde U, et al. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. Heart Failure J Am Coll Cardiol. 2014;2:141–5. Davis ME, Haglund NA, Tricarico NM, et al. Immediate recovery of acquired von willebrand syndrome after left ventricular assist device explantation: implications for heart transplantation. ASAIO J. 2015;61:e1–e4. Bartoli CR, Dassanayaka S, Brittian KR, et al. Insights into the mechanism(s) of von Willebrand factor degradation during mechanical circulatory support. J Thorac Cardiov Surg. 2014;147:1634–43. Bartoli CR, Restle DJ, Zhang DM, et al. Pathologic von Willebrand factor degradation with a left ventricular assist device occurs via two distinct mechanisms: mechanical demolition and enzymatic cleavage. J Thorac Cardiov Surg. 2015;149:281–9. Rosenberg G, Siedlecki CA, Jhun C-S, et al. Acquired von willebrand syndrome and blood pump design. Artif Organs. 2018;42(12):1119–24. Takami Y, Nakazawa T, Makinouchi K, et al. Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump. Artif Organs. 1997;21(7):686–90. Schweiger M, Hübler M, Albisetti M. Heparin anticoagulation monitoring in patients supported by ventricular assist devices. ASAIO J. 2015;61:487–8. Jennings DL, Horn ET, Lyster H, et al. Assessing anticoagulation practice patterns in patients on durable mechanical circulatory support devices: an international survey. ASAIO J. 2016;62:28–322. Kantorovich A, Fink JM, Militello MA, et al. Comparison of anticoagulation strategies after left ventricular assist device implantation. ASAIO J. 2016;62:123–7. Dang G, Epperla N, Muppidi V, et al. Medical management of pump-related thrombosis in patients with continuous-flow left ventricular assist devices: a systematic review and meta-analysis. ASAIO J. 2016;63:373–85. Sutera SP. Flow-induced trauma to blood cells. Circ Res. 1977;41(1):2–8. Wurzinger LJ, Opitz R, Blasberg P, et al. Platelet and coagulation parameters following millisecond exposure to laminal schear stress. Thromb Haemost. 1985;54(2):381–6. Boehme AK, Pamboukian SV, George JF, et al. Anticoagulation control in patients with ventricular assist devices. ASAIO J. 2017;63:759–65. Kirklin JK, Naftel DC, Kormos RL, et al. Interagency Registry for Mechanical Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2014;33(1):12–22. Maeda K, Almond C, Hollander SA, et al. Characteristics of deposits and pump exchange in the Berlin Heart EXCOR ventricular assist device: Experience with 67 cases. Pediatr Transplantation. 2018;22:e13181. Engelhardt S. In-vivo Langzeittestung antithrombogener Beschichtungen von mechanischen Kreislaufunterstützungssystemen im Schweinemodell. Freiburg: Albert-Ludwigs-Universtität; 2007. Noviani M, Jamiolkowski RM, Grenet JE, et al. Point-of-Care rapid-seeding ventricular assist device with blood-derived endothelial cells to create a living antithrombotic coating. ASAIO J. 2016;62:447–53. Upshaw JN, Kiernan MS, Morine KJ, et al. Incidence, management, and outcome of suspected continuous-flow left ventricular assist device thrombosis. ASAIO J. 2016;62:33–9. Nienaber J, Wilhelm MP, Sohail MR. Current concepts in the diagnosis and management of left ventricular assist device infections. Exp Rev Anti-infective Therapy. 2013;11(2):201–10. O’Horo JC, Abu Saleh OM, Stulak JM, et al. Left ventricular assist device infections: a systematic review. ASAIO J. 2018;64:287–94. Fried J, Cagliostro B, Levin A, et al. Driveline infection is not associated with increased risk of thrombotic events in CF-LVAD patients. J Heart Lung Transpl. 2015;34(4S):S27–S2828. Hidalgo LF, Shah KB, Cooke RH, et al. Infections in patients with a total artificial heart are common but rarely fatal. ASAIO J. 2017;63:736–9. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. New Engl J Med. 2001;345(20):1435–43. Quaini E, Pavie A, Chieco S, et al. The concerted acton “Heart” European registry on clinical application of mechanical circulatory support systems: bridge to transplant. Eur J Cardio-thorac Surg. 1997;11:182–8. De By TMMH, Mohasci P, Gahl B, et al. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): second report. Eur J Cardio-Thorac Surg. 2018;53:309–16. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. New Engl J Med. 2009;361:2241–51. Kirklin JK, Naftel DC, Pagani FD, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl. 2014;33(6):555–64. Lund LH, Edwards LB, Kucheryavaya AY, et al. The registry of the international society for heart and lung transplantation: thirtieth official adult heart transplant report-2013; focus theme: age. J Heart Lung Transpl. 2013;32(10):952–64. Kitamura S. Heart transplantation in Japan: a critical appraisal for the results and futur prospects. Gen Thorac Cardiovas Surg. 2012;60:639–44. Bryant R III, Zafar F, Castleberry C, et al. Transplant survival after Berlin heart EXCOR support. ASAIO J. 2017;63:80–5. Dandel M, Potapov E, Krabatsch T, et al. Myokarderholung unter mechanischer Ventrikelentlastung und Entwöhnung vom ventrikulären Unterstützungssytem. Zeitschr Herz- Thorax- Gefäßchir. 2012;26(6):374–82. Phan K, Huo YR, Zhao DF, et al. Ventricular recovery and pump explantation in patients supported by left ventricular assist devices: a systematic review. ASAIO J. 2016;62:219–31. Wever-Pinzon O, Drakos SG, McKellar SH, et al. Cardiac recovery during long-term left ventricular assist device support. J Am Coll Cardiol. 2016;68(14):1540–53. Saito S, Toda K, Miyagawa S, et al. Hemodynamic changes during left ventricular assist device-off test correlate with the degree of cardiac fibrosis and predict the outcome after device explantation. J Artif Organs. 2015;18:27–34. Segan LA, Nanayakkara SS, Leet AS, et al. Exercise hemodynamics as a predictor of myocardial recovery in LVAD patients. ASAIO J. 2017;63:342–5.