Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes

Bioresources and Bioprocessing - Tập 8 Số 1 - 2021
Jiachen Sun1, Le Zhang2, Kai‐Chee Loh1
1Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
2NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, Singapore 138602, Singapore

Tóm tắt

AbstractLignocellulosic biomass wastes are abundant resources that are usually valorized for methane-rich biogas via anaerobic digestion. Conversion of lignocellulose into volatile fatty acids (VFA) rather than biogas is attracting attention due to the higher value-added products that come with VFA utilization. This review consolidated the latest studies associated with characteristics of lignocellulosic biomass, the effects of process parameters during acidogenic fermentation, and the intensification strategies to accumulate more VFA. The differences between anaerobic digestion technology and acidogenic fermentation technology were discussed. Performance-enhancing strategies surveyed included (1) alkaline fermentation; (2) co-digestion and high solid-state fermentation; (3) pretreatments; (4) use of high loading rate and short retention time; (5) integration with electrochemical technology, and (6) adoption of membrane bioreactors. The recommended operations include: mesophilic temperature (thermophilic for high loading rate fermentation), C/N ratio (20–40), OLR (< 12 g volatile solids (VS)/(L·d)), and the maximum HRT (8–12 days), alkaline fermentation, membrane technology or electrodialysis recovery. Lastly, perspectives were put into place based on critical analysis on status of acidogenic fermentation of lignocellulosic biomass wastes for VFA production.

Từ khóa


Tài liệu tham khảo

Achinas S, Euverink GJW (2020) Effect of temperature and organic load on the performance of anaerobic bioreactors treating grasses. Environments 7:82. https://doi.org/10.3390/environments7100082

Agematu H, Takahashi T, Hamano Y (2017) Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess. J Biosci Bioeng 124:528–533. https://doi.org/10.1016/j.jbiosc.2017.06.006

Ai B, Li J, Chi X et al (2014) Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture. Biotechnol Bioprocess Eng 19:676–686. https://doi.org/10.1007/s12257-013-0655-z

Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/C6GC01007E

Andalib M, Taher E, Money B et al (2017) Full scale demonstration of non-VFA pathway enhanced biological phosphorus removal. Proc Water Environ Fed 2017:182–195. https://doi.org/10.2175/193864717821494475

Andersen SJ, Hennebel T, Gildemyn S et al (2014) Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ Sci Technol 48:7135–7142. https://doi.org/10.1021/es500483w

André L, Zdanevitch I, Pineau C et al (2019) Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. Bioresour Technol 289:121737. https://doi.org/10.1016/j.biortech.2019.121737

Aydin S, Yesil H, Tugtas AE (2018) Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour Technol 250:548–555. https://doi.org/10.1016/j.biortech.2017.11.061

Azadi P, Carrasquillo-Flores R, Pagán-Torres YJ et al (2012) Catalytic conversion of biomass using solvents derived from lignin. Green Chem 14:1573. https://doi.org/10.1039/c2gc35203f

Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523. https://doi.org/10.1016/j.rser.2012.12.022

Bastidas-Oyanedel J-R, Schmidt J (2018) Increasing profits in food waste biorefinery—a techno-economic analysis. Energies 11:1551. https://doi.org/10.3390/en11061551

Baumann I, Westermann P (2016) Microbial production of short chain fatty acids from lignocellulosic biomass: current processes and market. BioMed Res Int 2016:1–15. https://doi.org/10.1155/2016/8469357

Cabrera F, Serrano A, Torres Á et al (2019) The accumulation of volatile fatty acids and phenols through a pH-controlled fermentation of olive mill solid waste. Sci Total Environ 657:1501–1507. https://doi.org/10.1016/j.scitotenv.2018.12.124

Camani PH, Anholon BF, Toder RR, Rosa DS (2020) Microwave-assisted pretreatment of eucalyptus waste to obtain cellulose fibers. Cellulose 27:3591–3609. https://doi.org/10.1007/s10570-020-03019-7

Cavinato C, Da Ros C, Pavan P, Bolzonella D (2017) Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour Technol 223:59–64. https://doi.org/10.1016/j.biortech.2016.10.041

Chen Y, Wen Y, Zhou J et al (2012) Effects of pH on the hydrolysis of lignocellulosic wastes and volatile fatty acids accumulation: the contribution of biotic and abiotic factors. Bioresour Technol 110:321–329. https://doi.org/10.1016/j.biortech.2012.01.049

Choi O, Kim T, Woo HM, Um Y (2015) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961. https://doi.org/10.1038/srep06961

Corneli E, Dragoni F, Adessi A et al (2016) Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Bioresour Technol 211:509–518. https://doi.org/10.1016/j.biortech.2016.03.134

Cysneiros D, Banks CJ, Heaven S, Karatzas K-AG (2012) The effect of pH control and ‘hydraulic flush’ on hydrolysis and volatile fatty acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour Technol 123:263–271. https://doi.org/10.1016/j.biortech.2012.06.060

Da Ros C, Conca V, Eusebi AL et al (2020) Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale. Water Res 174:115633. https://doi.org/10.1016/j.watres.2020.115633

De Vrieze J, Arends JBA, Verbeeck K et al (2018) Interfacing anaerobic digestion with (bio)electrochemical systems: potentials and challenges. Water Res 146:244–255. https://doi.org/10.1016/j.watres.2018.08.045

Elalami D, Carrere H, Abdelouahdi K et al (2020) Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: impact on biochemical and structural properties of olive pomace. Bioresour Technol 299:122591. https://doi.org/10.1016/j.biortech.2019.122591

Eryildiz B, Lukitawesa TMJ (2020) Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresour Technol 302:122800. https://doi.org/10.1016/j.biortech.2020.122800

Eskicioglu C, Prorot A, Marin J et al (2008) Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res 42:4674–4682. https://doi.org/10.1016/j.watres.2008.08.010

Fang W, Zhang P, Zhang X et al (2018) White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy 162:534–541. https://doi.org/10.1016/j.energy.2018.08.082

Fasahati P, Liu J (2014) Techno-economic analysis of production and recovery of volatile fatty acids from brown algae using membrane distillation. In: Eden MR, Siirola JD, Towler GP (eds) Computer aided chemical engineering. Elsevier, Amsterdam, pp 303–308

Fernández-Dacosta C, Posada JA, Kleerebezem R et al (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377. https://doi.org/10.1016/j.biortech.2015.03.025

Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Int Conf Lignocellul Ethanol 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026

Gao Y, Peng Y, Zhang J et al (2011) Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresour Technol 102:4091–4097. https://doi.org/10.1016/j.biortech.2010.12.051

Gao L, Thangavel S, Guo Z-C et al (2020) Hydrodynamics analysis for an upflow integrated anaerobic digestion reactor with microbial electrolysis under different hydraulic retention times: effect of bioelectrode spatial distribution on functional communities involved in methane production and organic removal. ACS Sustain Chem Eng 8:190–199. https://doi.org/10.1021/acssuschemeng.9b05124

Garedew M, Lin F, Song B et al (2020) Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production. Chemsuschem 13:4214–4237. https://doi.org/10.1002/cssc.202000987

Gou C, Yang Z, Huang J et al (2014) Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 105:146–151. https://doi.org/10.1016/j.chemosphere.2014.01.018

Gould JM (1984) High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H2O2. Biotechnol Bioeng 26:628–631. https://doi.org/10.1002/bit.260260613

Guo P, Mochidzuki K, Cheng W et al (2011) Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 102:7526–7531. https://doi.org/10.1016/j.biortech.2011.04.083

Guo Z, Liu W, Yang C et al (2017) Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Res 125:170–179. https://doi.org/10.1016/j.watres.2017.08.039

Holliger C, Alves M, Andrade D et al (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522. https://doi.org/10.2166/wst.2016.336

Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378. https://doi.org/10.1016/j.bej.2007.08.001

Islam MdS, Guo C, Liu C-Z (2018) Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int J Hydrog Energy 43:659–666. https://doi.org/10.1016/j.ijhydene.2017.11.059

Janke L, Leite A, Batista K et al (2016) Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: effects of urea supplementation and sodium hydroxide pretreatment. Pretreat Biomass 199:235–244. https://doi.org/10.1016/j.biortech.2015.07.117

Jankowska E, Chwiałkowska J, Stodolny M, Oleskowicz-Popiel P (2015) Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour Technol 190:274–280. https://doi.org/10.1016/j.biortech.2015.04.096

Jankowska E, Chwialkowska J, Stodolny M, Oleskowicz-Popiel P (2017) Volatile fatty acids production during mixed culture fermentation—the impact of substrate complexity and pH. Chem Eng J 326:901–910. https://doi.org/10.1016/j.cej.2017.06.021

Jiang J, Zhang Y, Li K et al (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530. https://doi.org/10.1016/j.biortech.2013.06.025

Jiang Y, May HD, Lu L et al (2019) Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res 149:42–55. https://doi.org/10.1016/j.watres.2018.10.092

Jiang Y, Chu N, Zhang W et al (2020) Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode. Energy Convers Manag 204:112285. https://doi.org/10.1016/j.enconman.2019.112285

Kainthola J, Kalamdhad AS, Goud VV, Goel R (2019) Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour Technol 286:121368. https://doi.org/10.1016/j.biortech.2019.121368

Kandylis P, Bekatorou A, Pissaridi K et al (2016) Acidogenesis of cellulosic hydrolysates for new generation biofuels. Biomass Bioenergy 91:210–216. https://doi.org/10.1016/j.biombioe.2016.05.006

Khan MA, Ngo HH, Guo W et al (2019) Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor. Bioresour Technol 283:120–128. https://doi.org/10.1016/j.biortech.2019.03.073

Khanal SK, Chen W-H, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrog Energy 29:1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002

Kim N-J, Park GW, Kang J et al (2013) Volatile fatty acid production from lignocellulosic biomass by lime pretreatment and its applications to industrial biotechnology. Biotechnol Bioprocess Eng 18:1163–1168. https://doi.org/10.1007/s12257-013-0221-8

Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Pretreat Biomass 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

Kocher GS, Kaur P, Taggar MS (2017) An overview of pretreatment processes with special reference to biological pretreatment for rice straw delignification. Curr Biochem Eng 4:151–163. https://doi.org/10.2174/2212711903666161102141859

Kumar G, Mudhoo A, Sivagurunathan P et al (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737. https://doi.org/10.1016/j.biortech.2016.08.065

Lansing S, Hülsemann B, Choudhury A et al (2019) Food waste co-digestion in Germany and the United States: from lab to full-scale systems. Resour Conserv Recycl 148:104–113. https://doi.org/10.1016/j.resconrec.2019.05.014

Latif MA, Mehta CM, Batstone DJ (2017) Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res 113:42–49. https://doi.org/10.1016/j.watres.2017.02.002

Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99. https://doi.org/10.1016/j.cej.2013.09.002

Li X, Chen H, Hu L et al (2011) Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environ Sci Technol 45:1834–1839. https://doi.org/10.1021/es1031882

Li D, Liu S, Mi L et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol 189:319–326. https://doi.org/10.1016/j.biortech.2015.04.033

Liu X, Liu H, Chen Y et al (2008) Effects of organic matter and initial carbon–nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge. J Chem Technol Biotechnol 83:1049–1055. https://doi.org/10.1002/jctb.1913

Liu H, Wang J, Wang A, Chen J (2011) Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 89:1333–1340. https://doi.org/10.1007/s00253-010-3066-5

Liu H, Wang J, Liu X et al (2012) Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res 46:799–807. https://doi.org/10.1016/j.watres.2011.11.047

Liu S, Bischoff KM, Leathers TD et al (2013) Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213. Bioresour Technol 143:322–329. https://doi.org/10.1016/j.biortech.2013.06.015

Liu H, Wang Y, Yin B et al (2016a) Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Bioresour Technol 218:92–100. https://doi.org/10.1016/j.biortech.2016.06.077

Liu J, Yu D, Zhang J et al (2016b) Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res 98:98–108. https://doi.org/10.1016/j.watres.2016.03.073

Liu H, Han P, Liu H et al (2018) Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour Technol 260:105–114. https://doi.org/10.1016/j.biortech.2018.03.105

Liu L, Zhang Z, Wang J et al (2019a) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946–952. https://doi.org/10.1016/j.energy.2018.11.132

Liu S, Deng Z, Li H, Feng K (2019b) Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste. Bioresour Technol 288:121536. https://doi.org/10.1016/j.biortech.2019.121536

Liu T, Zhou X, Li Z et al (2019c) Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw. Bioresour Technol 280:345–351. https://doi.org/10.1016/j.biortech.2019.01.147

Liu J, Yin J, He X et al (2021) Optimizing food waste hydrothermal parameters to reduce Maillard reaction and increase volatile fatty acid production. J Environ Sci 103:43–49. https://doi.org/10.1016/j.jes.2020.09.032

Lu X, Wang H, Ma F et al (2018) Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: effects of an iron oxide-zeolite additive. Bioresour Technol 262:169–176. https://doi.org/10.1016/j.biortech.2018.04.052

Macias-Corral M, Samani Z, Hanson A et al (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293. https://doi.org/10.1016/j.biortech.2008.03.057

Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. https://doi.org/10.1016/j.rser.2015.02.032

Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F (2018) Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chem 20:2534–2546. https://doi.org/10.1039/C8GC00385H

Mockaitis G, Bruant G, Guiot SR et al (2020) Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew Energy 145:1388–1398. https://doi.org/10.1016/j.renene.2019.06.134

Mohsenzadeh A, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production. J Chem Technol Biotechnol 87:1209–1214. https://doi.org/10.1002/jctb.3695

Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247. https://doi.org/10.1016/j.biortech.2012.06.040

Mu L, Zhang L, Zhu K et al (2020) Anaerobic co-digestion of sewage sludge, food waste and yard waste: synergistic enhancement on process stability and biogas production. Sci Total Environ 704:135429. https://doi.org/10.1016/j.scitotenv.2019.135429

Murali N, Fernandez S, Ahring BK (2017) Fermentation of wet-exploded corn stover for the production of volatile fatty acids. Bioresour Technol 227:197–204. https://doi.org/10.1016/j.biortech.2016.12.012

Musa M, Idrus S, Che Man H, Nik Daud N (2018) Wastewater treatment and biogas recovery using anaerobic membrane bioreactors (AnMBRs): strategies and achievements. Energies 11:1675. https://doi.org/10.3390/en11071675

Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78:349–358. https://doi.org/10.1016/S0016-2361(98)00156-2

Pan X-R, Li W-W, Huang L et al (2018) Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis–electrodialysis integrated system. Bioresour Technol 260:61–67. https://doi.org/10.1016/j.biortech.2018.03.083

Panigrahi S, Sharma HB, Dubey BK (2019) Overcoming yard waste recalcitrance through four different liquid hot water pretreatment techniques—structural evolution, biogas production and energy balance. Biomass Bioenergy 127:105268. https://doi.org/10.1016/j.biombioe.2019.105268

Park SK, Jang HM, Ha JH, Park JM (2014) Sequential sludge digestion after diverse pre-treatment conditions: sludge removal, methane production and microbial community changes. Bioresour Technol 162:331–340. https://doi.org/10.1016/j.biortech.2014.03.152

Perendeci N, Gökgöl S, Orhon D (2018) Impact of alkaline H2O2 pretreatment on methane generation potential of greenhouse crop waste under anaerobic conditions. Molecules 23:1794. https://doi.org/10.3390/molecules23071794

Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefining 2:58–73. https://doi.org/10.1002/bbb.48

Puyuelo B, Gea T, Sánchez A (2010) A new control strategy for the composting process based on the oxygen uptake rate. Chem Eng J 165:161–169. https://doi.org/10.1016/j.cej.2010.09.011

Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

Rago L, Pant D, Schievano A (2019) Electro-fermentation—microbial electrochemistry as new frontier in biomass refineries and industrial fermentations. Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier, Amsterdam, pp 265–287

Ramos-Suarez M, Zhang Y, Outram V (2021) Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev Environ Sci Biotechnol 20:439–478. https://doi.org/10.1007/s11157-021-09566-0

Reddy KO, Maheswari CU, Shukla M, Rajulu AV (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67:35–38. https://doi.org/10.1016/j.matlet.2011.09.027

Regueiro L, Veiga P, Figueroa M et al (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589. https://doi.org/10.1016/j.micres.2012.06.002

Reilly M, Dinsdale R, Guwy A (2014) Mesophilic biohydrogen production from calcium hydroxide treated wheat straw. Int J Hydrog Energy 39:16891–16901. https://doi.org/10.1016/j.ijhydene.2014.08.069

Ren N et al (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng 54:6

Rouches E, Escudié R, Latrille E, Carrère H (2019) Solid-state anaerobic digestion of wheat straw: impact of S/I ratio and pilot-scale fungal pretreatment. Waste Manag 85:464–476. https://doi.org/10.1016/j.wasman.2019.01.006

Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372. https://doi.org/10.1016/j.indcrop.2012.11.025

Saha M, Saynik PB, Borah A et al (2019) Dioxane-based extraction process for production of high quality lignin. Bioresour Technol Rep 5:206–211. https://doi.org/10.1016/j.biteb.2019.01.018

Sanders ME, Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84:319–331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5

Saritpongteeraka K, Chaiprapat S, Boonsawang P, Sung S (2015) Solid state co-fermentation as pretreatment of lignocellulosic palm empty fruit bunch for organic acid recovery and fiber property improvement. Int Biodeterior Biodegrad 100:172–180. https://doi.org/10.1016/j.ibiod.2015.03.001

Sawatdeenarunat C, Sung S, Khanal SK (2017) Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour Technol 237:139–145. https://doi.org/10.1016/j.biortech.2017.02.029

Seeliger S, Janssen PH, Schink B (2002) Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 211:65–70. https://doi.org/10.1111/j.1574-6968.2002.tb11204.x

Sharma HB, Panigrahi S, Dubey BK (2019) Hydrothermal carbonization of yard waste for solid bio-fuel production: study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Waste Manag 91:108–119. https://doi.org/10.1016/j.wasman.2019.04.056

Shi J, Wang Z, Stiverson JA et al (2013) Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol 136:574–581. https://doi.org/10.1016/j.biortech.2013.02.073

Shi X, Lin J, Zuo J et al (2017) Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. J Environ Sci 55:49–57. https://doi.org/10.1016/j.jes.2016.07.006

Soltanian S, Aghbashlo M, Almasi F et al (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag 212:112792. https://doi.org/10.1016/j.enconman.2020.112792

Song K, Chu Q, Hu J et al (2019a) Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept. Bioresour Technol 276:161–169. https://doi.org/10.1016/j.biortech.2018.12.107

Song X, Wachemo AC, Zhang L et al (2019b) Effect of hydrothermal pretreatment severity on the pretreatment characteristics and anaerobic digestion performance of corn stover. Bioresour Technol 289:121646. https://doi.org/10.1016/j.biortech.2019.121646

Sturm-Richter K, Golitsch F, Sturm G et al (2015) Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol 186:89–96. https://doi.org/10.1016/j.biortech.2015.02.116

Sun C, Liu R, Cao W et al (2015) Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energy Fuels 29:4966–4975. https://doi.org/10.1021/acs.energyfuels.5b00838

Sun J, Li Z, Zhou X et al (2019) Investigation on methane yield of wheat husk anaerobic digestion and its enhancement effect by liquid digestate pretreatment. Anaerobe 59:92–99. https://doi.org/10.1016/j.anaerobe.2019.05.009

Tahboub MB, Lindemann WC, Murray L (2008) Chemical and physical properties of soil amended with pecan wood chips. HortScience 43:891–896. https://doi.org/10.21273/HORTSCI.43.3.891

Tao X, Zhang P, Zhang G et al (2019) Carbide slag pretreatment enhances volatile fatty acid production in anaerobic fermentation of four grass biomasses. Energy Convers Manag 199:112009. https://doi.org/10.1016/j.enconman.2019.112009

Tezel U, Tandukar M, Pavlostathis SG (2011) 6.35—Anaerobic biotreatment of municipal sewage sludge. In: Moo-Young M (ed) Comprehensive biotechnology (Second Edition). Academic Press, Burlington, pp 447–461

Tian D, Guo Y, Hu J et al (2020) Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. Int J Biol Macromol 142:288–297. https://doi.org/10.1016/j.ijbiomac.2019.09.100

Torri C, Samorì C, Ajao V et al (2019) Pertraction of volatile fatty acids through biodiesel-based liquid membranes. Chem Eng J 366:254–263. https://doi.org/10.1016/j.cej.2019.02.081

Tu W, Zhang D, Wang H (2019) Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields. Waste Manag 96:149–157. https://doi.org/10.1016/j.wasman.2019.07.021

Vidal BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion—a review. Appl Biochem Biotechnol 164:1405–1421. https://doi.org/10.1007/s12010-011-9221-3

Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ (2019a) Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered 10:437–458. https://doi.org/10.1080/21655979.2019.1673937

Wainaina S, Parchami M, Mahboubi A et al (2019b) Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol 274:329–334. https://doi.org/10.1016/j.biortech.2018.11.104

Wang X, Yang G, Feng Y et al (2012) Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058

Wang D, Liu Y, Ngo HH et al (2017) Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresour Technol 238:343–351. https://doi.org/10.1016/j.biortech.2017.04.054

Wang X, Li Z, Bai X et al (2018) Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: methane production and microbial community in CSTR process. Bioresour Technol 249:290–297. https://doi.org/10.1016/j.biortech.2017.10.038

Wang S, Tao X, Zhang G et al (2019a) Benefit of solid-liquid separation on volatile fatty acid production from grass clipping with ultrasound-calcium hydroxide pretreatment. Bioresour Technol 274:97–104. https://doi.org/10.1016/j.biortech.2018.11.072

Wang X, Guo W, Wen Y (2019b) Effects of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation under neutral and strongly alkaline conditions. IOP Conf Ser Earth Environ Sci 358:022050. https://doi.org/10.1088/1755-1315/358/2/022050

Wikandari R, Taherzadeh MJ (2019) Rapid anaerobic digestion of organic solid residuals for biogas production using flocculating bacteria and membrane bioreactors—a critical review. Biofuels Bioprod Biorefin 13:1119–1132. https://doi.org/10.1002/bbb.1984

World Bioenergy Association (2016) Global biomass potential towards 2035

Wu Q, Bao X, Guo W et al (2019) Medium chain carboxylic acids production from waste biomass: current advances and perspectives. Biotechnol Adv 37:599–615. https://doi.org/10.1016/j.biotechadv.2019.03.003

Xiang C, Tian D, Hu J et al (2021) Why can hydrothermally pretreating lignocellulose in low severities improve anaerobic digestion performances? Sci Total Environ 752:141929. https://doi.org/10.1016/j.scitotenv.2020.141929

Xu H, Li Y, Hua D et al (2021) Effect of microaerobic microbial pretreatment on anaerobic digestion of a lignocellulosic substrate under controlled pH conditions. Bioresour Technol 328:124852. https://doi.org/10.1016/j.biortech.2021.124852

Yang L, Xu F, Ge X, Li Y (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev 44:824–834. https://doi.org/10.1016/j.rser.2015.01.002

Yang Y, Yang J, Cao J, Wang Z (2018) Pretreatment with concurrent UV photocatalysis and alkaline H2O2 enhanced the enzymatic hydrolysis of sisal waste. Bioresour Technol 267:517–523. https://doi.org/10.1016/j.biortech.2018.07.038

Yao Z, Li W, Kan X et al (2017) Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass. Energy 124:133–145. https://doi.org/10.1016/j.energy.2017.02.035

Yuan H, Song X, Guan R et al (2019) Effect of low severity hydrothermal pretreatment on anaerobic digestion performance of corn stover. Bioresour Technol 294:122238. https://doi.org/10.1016/j.biortech.2019.122238

Zealand AM, Roskilly AP, Graham DW (2017) Effect of feeding frequency and organic loading rate on biomethane production in the anaerobic digestion of rice straw. Transform Innov Sustain Future Part II 207:156–165. https://doi.org/10.1016/j.apenergy.2017.05.170

Zhang Y, Hu J (2018) Development of Chinese character-writing program for mobile devices. In: Zhang Y, Cristol D (eds) Handbook of mobile teaching and learning. Springer, Berlin, pp 1–15

Zhang B, Zhang L-L, Zhang S-C et al (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26:329–340. https://doi.org/10.1080/09593332608618563

Zhang X, Qiu W, Chen H (2012) Enhancing the hydrolysis and acidification of steam-exploded cornstalks by intermittent pH adjustment with an enriched microbial community. Bioresour Technol 123:30–35. https://doi.org/10.1016/j.biortech.2012.07.054

Zhang J, Li W, Lee J et al (2017) Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. Energy 137:479–486. https://doi.org/10.1016/j.energy.2017.02.163

Zhang L, Loh K-C, Zhang J (2018) Food waste enhanced anaerobic digestion of biologically pretreated yard waste: analysis of cellulose crystallinity and microbial communities. Waste Manag 79:109–119. https://doi.org/10.1016/j.wasman.2018.07.036

Zhang L, Loh K-C, Zhang J (2019) Enhanced biogas production from anaerobic digestion of solid organic wastes: current status and prospects. Bioresour Technol Rep 5:280–296. https://doi.org/10.1016/j.biteb.2018.07.005

Zhang L, Loh K-C, Kuroki A et al (2021) Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: current status and prospects. J Hazard Mater 402:123543. https://doi.org/10.1016/j.jhazmat.2020.123543

Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78. https://doi.org/10.1016/j.biortech.2017.06.121

Zhou M, Yan B, Lang Q, Zhang Y (2019) Elevated volatile fatty acids production through reuse of acidogenic off-gases during electro-fermentation. Sci Total Environ 668:295–302. https://doi.org/10.1016/j.scitotenv.2019.03.001

Zhu Y, Yang S-T (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110:143–157. https://doi.org/10.1016/j.jbiotec.2004.02.006

Zhu L, Li W, Dong X (2003) Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int J Syst Evol Microbiol 53:1619–1623. https://doi.org/10.1099/ijs.0.02617-0