Review: The role of microRNAs in kidney disease

Nephrology - Tập 15 Số 6 - Trang 599-608 - 2010
Jordan Li1,2, Tuck Y. Yong3,2, Michael Michael4,2, Jonathan Gleadle1,2
1Departments of Renal Medicine and
2School of Medicine, Flinders University, Adelaide, South Australia, Australia
3General Medicine and
4Gastroenterology and Hepatology, Flinders Medical Centre, and

Tóm tắt

ABSTRACTMicroRNAs (miRNAs) are short non‐coding RNAs that modulate physiological and pathological processes by inhibiting target gene expression via blockade of protein translation or by inducing mRNA degradation. These miRNAs potentially regulate the expression of thousands of proteins. As a result, miRNAs have emerged rapidly as a major new area of biomedical research with relevance to kidney disease. MiRNA expression has been shown to differ between the kidney and other organs as well as between different kidney regions. Furthermore, miRNAs have been found to be functionally important in models of podocyte development, diabetic nephropathy and polycystic kidney disease. Of particular interest, podocyte‐specific deletion of Dicer, a key enzyme in the biogenesis of miRNA, results in proteinuria and severe renal impairment in mice. One miRNA (miR‐192) can also act as an effector of transforming growth factor‐β activity in the high‐glucose environment of diabetic nephropathy. Differential expression of miRNAs has been reported in kidney allograft rejection. It is anticipated that future studies involving miRNAs will generate new insights into the complex pathophysiology underlying various kidney diseases, generate diagnostic biomarkers and might be of value as therapeutic targets for progressive kidney diseases. The purpose of this review is to highlight key miRNA developments in kidney diseases and how this might influence the diagnosis and management of patients with kidney disease in the future.

Từ khóa


Tài liệu tham khảo

10.1016/0092-8674(93)90529-Y

10.1016/S0092-8674(04)00045-5

10.1038/sj.emboj.7600385

10.1101/gad.1262504

10.1038/nature03120

10.1093/emboj/cdf476

10.1101/gad.1158803

10.1126/science.1062961

10.1242/dev.02070

10.1101/gad.1187904

10.1073/pnas.0808830105

10.1073/pnas.0607015103

10.1073/pnas.0707594105

10.1038/ng1590

10.1002/jcp.21230

Michael MZ, 2006, Cloning microRNAs from mammalian tissues, Methods Mol. Biol., 342, 189

10.1093/nar/gkj112

10.1038/nmeth704

10.1093/nar/gni178

10.1093/nar/gkn725

10.1038/nmeth843

10.1126/science.1178178

10.1038/nature06783

10.1093/nar/gnh186

10.1073/pnas.0403293101

10.1101/gr.6587008

10.1681/ASN.2008030312

10.1681/ASN.2008020233

10.1681/ASN.2008020162

10.1161/CIRCRESAHA.108.182535

10.1242/dev.037432

10.1681/ASN.2009090964

10.1681/ASN.2009070718

10.1073/pnas.0611192104

10.1681/ASN.2009050530

10.1152/ajpendo.00271.2007

10.1038/ncb1897

10.1016/j.febslet.2009.05.021

10.1096/fj.08-112326

10.1016/j.bbrc.2009.02.013

10.1097/00041552-200205000-00007

10.1016/S0092-8674(00)81570-6

10.1093/hmg/11.16.1845

Sun H, MicroRNA‐17 post‐transcriptionally regulates polycystic kidney disease‐2 gene and promotes cell proliferation, Mol. Biol. Rep.

10.1242/dev.046045

10.1186/1471-2164-9-624

10.1016/S0092-8674(03)01018-3

10.1371/journal.pbio.0020363

Aoki KF, 2005, Curr. Protoc. Bioinformatics, 1.12.1

10.1093/nar/gkh036

10.1172/JCI34922

Dai Y, 2008, Microarray analysis of micro‐ribonucleic acid expression in primary immunoglobulin A nephropathy, Saudi Med. J., 29, 1388

10.1038/labinvest.2009.118

10.1007/s00296-008-0758-6

10.1177/0961203307084158

10.1074/jbc.M601496200

10.1086/519979

10.1038/ajh.2009.208

10.1016/j.ejso.2009.04.010

10.1111/j.1582-4934.2009.00705.x

10.1016/j.clinbiochem.2009.07.020

10.1158/0008-5472.CAN-08-0592

10.1172/JCI200320530

10.1038/nrm1835

10.1007/s00018-009-8750-1

10.1097/01.ASN.0000106015.29070.E7

10.2337/diabetes.54.6.1626

10.1097/01.ASN.0000093460.24823.5B

10.1038/ncb1722

10.1101/gad.1640608

10.1074/jbc.C800074200

10.1038/embor.2008.74

10.1053/j.ajkd.2009.05.009

10.1073/pnas.0813121106

10.1016/j.trim.2008.01.007

10.1016/j.chom.2008.05.002

10.1016/j.jcv.2007.11.024

10.1158/0008-5472.CAN-07-5126

10.1128/JVI.01144-08

10.1038/nature03702

10.1073/pnas.0804549105

10.1038/cr.2008.290

10.1016/j.cell.2004.12.031

10.1038/sj.cdd.4402310

10.1158/1078-0432.CCR-07-1755

10.1159/000146075

10.1111/j.1523-1755.2005.09909.x

10.1146/annurev.med.59.061506.154239

10.1371/journal.pone.0003148

10.1038/ncb1596

10.1016/j.ygyno.2008.04.033

10.3816/CLC.2009.n.006

10.1371/journal.pone.0003694

10.1152/ajprenal.00381.2009

10.1016/j.imlet.2006.09.005

10.1093/intimm/dxh267

10.1196/annals.1448.015

Hanke M, 2009, A robust methodology to study urine microRNA as tumor marker: MicroRNA‐126 and microRNA‐182 are related to urinary bladder cancer, Urol. Oncol.

10.1073/pnas.0403453101

10.1111/j.1440-1797.2005.00387.x

10.1681/ASN.2008040406

10.1038/ki.2008.206

Zhou H, 2008, Combination of microRNA192 and microRNA27b from urinary exosomes differentiate between renal tubular damage and glomerular injury [Abstract], J. Am. Soc. Nephrol., 19, 672A

10.1038/nature04303

10.1038/nmeth1079

10.1016/j.cmet.2006.01.005

10.1093/nar/gkm1113

10.1126/science.1113329

10.2165/00003088-199528010-00002

Rifai A, 1996, Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice, Am. J. Pathol., 149, 717

10.1261/rna.7240905

10.1101/gad.1444406

10.1016/j.molcel.2008.09.014

10.1038/nature08199

10.1016/j.cell.2007.09.021

10.1016/j.cell.2007.12.024

10.1126/science.1149460

10.1038/nrg2290