Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá: Tác động tiềm ẩn của việc lưu trữ khí carbon dioxide dưới lòng đất trong các tầng nước mặn sâu đối với nguồn nước ngầm nông
Tóm tắt
Việc lưu trữ khí CO2 dưới lòng đất trong các tầng nước mặn sâu được xem là một biện pháp để giảm thiểu khí thải nhà kính vào bầu khí quyển. Tuy nhiên, một số vấn đề đã được đưa ra liên quan đến những nguy cơ tiềm ẩn đối với nguồn nước ngầm nông do sự rò rỉ CO2, sự dịch chuyển nước muối và sự gia tăng áp suất. Bài viết này cung cấp một cái nhìn tổng quan về kiến thức khoa học hiện nay liên quan đến tác động tiềm tàng đối với nguồn nước ngầm nông từ việc lưu trữ khí CO2 trong các tầng nước mặn sâu, xác định các khoảng trống kiến thức mà từ đó đề xuất các cơ hội nghiên cứu độc lập. Hai tác động chính được xác định và thảo luận: tác động gần do dòng chảy thẳng đứng của CO2 ở pha tự do lên các tầng nước mặt, và tác động xa gây ra bởi sự dịch chuyển quy mô lớn của nước hình thành bởi khí CO2 được bơm vào. Đối với tác động gần, các nghiên cứu số cho thấy khả năng xuất hiện các nguyên tố vi lượng nhưng nồng độ hiếm khi vượt quá giới hạn tối đa cho nước uống. Đối với tác động xa, các nghiên cứu số chỉ dự đoán các tác động nhỏ ngoại trừ một số điều kiện địa chất cụ thể như độ thẩm thấu vỏ caprock cao. Mặc dù còn nhiều khoảng trống kiến thức quan trọng, tác động môi trường khả thi của việc lưu trữ khí CO2 dưới lòng đất trong các tầng nước mặn sâu đối với nguồn nước ngầm nông có vẻ là thấp, nhưng cần nhiều công việc hơn nữa để đánh giá tác động cụ thể theo địa điểm.
Từ khóa
#lưu trữ khí CO2 #nguồn nước ngầm nông #nghiên cứu địa chất #tầng nước mặn sâuTài liệu tham khảo
Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems, version 3.0 user’s manual. US Environmental Protection Agency report EPA/600/3-91/021, US EPA, Washington, DC
Apps JA, Zhang Y, Zheng L, Xu T, Birkholzer JT (2009) Identification of thermodynamic controls defining the concentrations of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure. Energy Procedia 1:1917–1924
Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT (2010) Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transp Porous Media 82(1):215–246. doi:10.1007/s11242-009-9509-8
Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307(7):974–1008. doi:10.2475/07.2007.02
Audigane P, Chiaberge C, Lions J, Humez P (2009) Modeling of CO2 leakage through an abandoned well from a deep saline aquifer to fresh groundwater, Proceedings of TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, 8 pp
Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9
Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273. doi:10.1016/j.pecs.2007.10.001
Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifer to sequester CO2 in solution. Energy Convers Manage 44:3151–3175
Bachu S, Celia MA (2009) Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. AGU Monograph, pp 203–216, AGU, Washington, DC
Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manage 34(4):269–279. doi:10.1016/0196-8904(94)90060-4
Bense VF, Person MA (2008) Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. J Geophys Res 113:F04005. doi:10.1029/2007JF000969
Berger A, Loutre M-F (2004) A quand la prochaine glaciation? [When will be the next glaciation?]. Dossiers Rech 17:18–22
Bergman PD, Winter EM (1995) Disposal of carbon dioxide in aquifers in the US. Energy Convers Manage 36(6–9):523–526. doi:10.1016/0196-8904(95)00058-L
Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge, UK
Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenhouse Gas Control 3:745–756. doi:10.1016/j.ijggc.2009.07.002
Birkholzer JT, Apps J, Zheng L, Zhang Y, Xu T, Tsang C-F (2008a) Research project on CO2 geological storage and groundwater resources, quality effects caused by CO2 Intrusion into Shallow Groundwater, Technical Report, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 352 pp
Birkholzer JT, Zhou Q, Zhang K, Jordan P, Rutqvist J, Tsang C-F (2008b) Research project on CO2 geological storage and groundwater resources: large-scale hydrogeological evaluation and impact on groundwater systems, Annual Report October 1, 2007 to September 30, 2008, Lawrence Berkeley National Laboratory, Berkeley, CA
Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Control 3:181–194. doi:10.1016/j.ijggc.2008.08.002
Birkholzer JT, Zheng L, Spycher N, Varadharajan C, Nico PS (2010) Groundwater quality changes in response to CO2 leakage from deep geological storage. Geol Soc Am Abstr 42(5):45
Bredehoeft JD (2003) From models to performance assessment: the conceptualization problem. Ground Water 41(5):571–577
Carey JW, Wigand M, Chipera SJ, WoldeGabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie GD Jr (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int J Greenhouse Gas Control 1(1):75–85. doi:10.1016/S1750-5836(06)00004-1
Carroll S, Haoa Y, Aines R (2009) Transport and detection of carbon dioxide in dilute aquifers. Energy Procedia 1:2111–2118. doi:10.1016/j.egypro.2009.01.275
Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47(5):627–638. doi:10.1111/j.1745-6584.2009.00590.x
Cherry JA (1983) Migration of contaminants in groundwater at a landfill: a case study. J Hydrol 63:1–2, vii–ix
Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Naderi Beni A, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13:409–434. doi:10.1007/s10596-009-9146-x
Dong Y, Li G, Li M, Wu R (2009) Impact of large-scale CO2 geologic storage in deep saline aquifers: an example from the Songliao Basin, China, Proceeding of the TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, CA, 6 pp
Doughty C, Pruess K, Benson SM, Hovorka SD, Knox PR, Green CT (2001) Capacity investigation of brine-bearing sands of the Frio Formation for geologic sequestration of CO2. Proceedings of First National Conference on Carbon Sequestration, 14–17 May 2001, Washington, DC, USDOE/NETL-2001/1144 Paper, National Energy Technology Laboratory, US DOE, Washington, DC, pp 32–48, available on CD-ROM
Ennis-King JP, Paterson L (2003) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE paper no. 84344, Presented at Society of Petroleum Engineers Annual Technical Conference and Exhibition, Denver, CO, 5–8 October 2003, SPE, Richardson, TX
Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720. doi:10.1007/s00254-004-1073-5
Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenhouse Gas Control 4:73–89
Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int J Greenhouse Gas Control 2(4):605–625
Grasby S, Osadetz K, Betcher R, Render F (2000) Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology 28(7):635–638
Gustafson G, Gylling B, Selroos J-O (2009) The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks. Hydrogeol J 17:1031–1033. doi:10.1007/s10040-008-0419-6
Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers Manage 40:835–843. doi:10.1016/S0196-8904(98)00146-0
Holloway SH (1997) An overview of the underground disposal of carbon dioxide. Energy Convers Manage 38(1):193–198
Holloway SH, Savage D (1993) The potential for aquifer disposal of carbon dioxide in the UK. Energy Convers Manage 34(9–11):925–932. doi:10.1016/0196-8904(93)90038-C
IPCC (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 442 pp
Jaffé PR, Wang S (2003) Potential effect of CO2 releases from deep reservoirs on the quality of fresh-water aquifers. In: Gale J, Kaya Y (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Pergamon, New York, pp 1657–1660
Jost A, Violette S, Gonçalvès J, Ledoux E, Guyomard Y, Guillocheau F, Kageyama M, Ramstein G, Suc J-P (2007) Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: the case of the Paris basin, France. Phys Chem Earth 32:368–378. doi:10.1016/j.pce.2006.02.053
Keating EH, Fessenden J, Kanjorski N, Koning DJ, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60(3):521–536. doi:10.1007/s12665-009-0192-4
Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of gases in sedimentary basins. Geology 34(7):577–580. doi:10.1130/G22357.1
Kharaka YK, Thordsen JJ, Hovorka SD, Nance HS, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl Geochem 24:1106–1112. doi:10.1016/j.apgeochem.2009.02.010
Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson KS (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ Earth Sci 60:273–284. doi:10.1007/s12665-009-0401-1
Kolak JJ, Burruss RC (2006) Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds. Energy Fuels 20:566–574
Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, NJ
LeBlanc DR, Garabedian SP, Hess KM, Gelhar LW, Quadri RD, Stollenwerk KG, Wood WW (1991) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. experimental design and observed tracer movement. Water Resour Res 27(5):895–910
Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008a) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res 113:F01011. doi:10.1029/2007JF000838
Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008b) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys Res 113:F03017. doi:10.1029/2007JF000928
Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008c) Simulating the impact of glaciations on continental groundwater flow systems: 2 model application to the Wisconsinian glaciation over the Canadian landscape. J Geophys Res 113:F03018. doi:10.1029/2007JF000929
Lewicki JL, Birkholzer J, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52:457–467. doi:10.1007/s00254-006-0479-7
McGrath AE, Upson GL, Caldwell MD (2007) Evaluation and mitigation of landfill gas impacts on cadmium leaching from native soils. Ground Water Monit Rem 27(4):99–109
McPherson BJOL, Cole BS (2000) Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA. J Geochem Explor 69–70(65–69). doi:10.1016/S0375-6742(00)00046-7
Michael K, Gola A, Shulakov V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. Int J Greenhouse Gas Control 4:659–667. doi:10.1016/j.ijggc.2009.12.011
Nicot J-P (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenhouse Gas Control 2:582–593. doi:10.1016/j.ijggc.2008.03.004
Nicot J-P, Hovorka SD, Choi J-W (2009) Investigation of water displacement following large CO2 sequestration operations. Energy Procedia 1:4411–4418. doi:10.1016/j.egypro.2009.02.256
Nitao JJ (1998) Reference manual for the NUFT flow and transport code, version 2.0. UCRL-MA-130651, Lawrence Livermore National Laboratory, Livermore, CA
Nordbotten JM, Celia MA, Bachu S (2004) Analytical solutions for leakage rates through abandoned wells. Water Resour Res 40:W04204. doi:10.1029/2003WR002997
Park Y-J, Sudicky EA, Sykes JF (2009) Effects of shield brine on the safe disposal of waste in deep geologic environments. Adv Water Resour 32:1352–1358. doi:10.1016/j.advwatres.2009.06.003
Person M, McIntosh J, Bense V, Remenda VH (2007) Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev Geophys 45:RG3007. doi:10.1029/2006RG000206
Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J, Bense V (2010) Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. Int J Greenhouse Gas Control 4:840–854. doi:10.1016/j.ijggc.2010.04.004
Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Technical report LBNL-57952, Lawrence Berkeley National Laboratory, Berkeley, CA, 76 pp
Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686. doi:10.1007/s00254-007-0945-x
Pruess K, Oldenburg CM, Moridis G (1999) TOUGH2 user’s guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA
Pruess K, García J, Kovscek T, Oldenburg C, Rutqvist J, Steefel C, Xu T (2004) Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29:1431–1444. doi:10.1016/j.energy.2004.03.077
Rivera A (2005) How well do we understand groundwater in Canada? A science case study. Geological Society of Canada, Ottawa, ON
Rivett MO, Feenstra S, Cherry JA (1992) Groundwater zone transport of chlorinated solvents: a field experiment. Paper presented at Modern Trends in Hydrogeology, Conference of the Canadian Chapter, International Association of Hydrogeologists, Hamilton, ON
Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes associated with CO2 injection into a brine formation. Environ Geol 42:296–305. doi:10.1007/s00254-001-0499-2
Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manage 48:1798–1807. doi:10.1016/j.enconman.2007.01.021
Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52(1–4):245–275
Smyth RC, Hovorka SD, Lu J, Romanak KD, Partin JW, Wong C, Yang C (2009) Assessing risk to fresh water resources from long term CO2 injection: laboratory and field studies. Energy Procedia 1:1957–1964. doi:10.1016/j.egypro.2009.01.255
Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2009) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60:227–239. doi:10.1007/s12665-009-0400-2
Sudicky EA (1986) A natural-gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082
Tsang C-F, Stephansson O, Jing L, Kautsky F (2009) DECOVALEX Project: from 1992 to 2007. Environ Geol 57:1221–1237. doi:10.1007/s00254-008-1625-1
van der Meer LGH (1992) Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Convers Manage 33(5–8):611–618
Wang S, Jaffe PR (2004) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations: effect of dissolution kinetics. Energy Convers Manage 45:2833–2848. doi:10.1016/j.enconman.2004.01.002
Xu T, Sonnenthal EL, Spycher N, Pruess K (2004) TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. Report LBNL-55460. Lawrence Berkeley National Laboratory, Berkeley, CA
Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenhouse Gas Control 3:586–599. doi:10.1016/j.ijggc.2009.04.007
Zhang K, WU YS, Pruess K (2008) User’s guide for TOUGH2-MP: a massively parallel version of the TOUGH2 code. Report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley, CA
Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009a) On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chem Geol 268:281–297. doi:10.1016/j.chemgeo.2009.09.007
Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009b) Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1:1887–1894. doi:10.1016/j.egypro.2009.01.246
Zheng L, Apps AA, Spycher N, Birkholzer JT, Kharaka Y, Thordsen J, Kakouros E, Trautz R (2009c) Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment. Proceeding of the TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, CA, 10 pp
Zhou Q, Birkholzer JT, Mehnert E, Lin Y-F, Zhang K (2010) Modeling basin- and plume-scale processes of CO2 storage for full scale deployment. Ground Water 48(4):494–514. doi:10.1111/j.1745-6584.2009.00657.x
