Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous

Palaeogeography, Palaeoclimatology, Palaeoecology - Tập 441 - Trang 393-411 - 2016
B. Sames1,2, M. Wagreich1, J.E. Wendler3, B.U. Haq4, C.P. Conrad5, M.C. Melinte-Dobrinescu6, X. Hu7, I. Wendler3, E. Wolfgring1, I.Ö. Yilmaz8,9, S.O. Zorina10
1University of Vienna, Department for Geodynamics and Sedimentology, Geozentrum, Althanstrasse 14, 1090 Vienna, Austria
2Sam Noble Oklahoma Museum of Natural History, 2401 Chautauqua Avenue, Norman, OK 73072-7029, USA
3Bremen University, Department of Geosciences, P.O. Box 330440, 28334 Bremen, Germany
4Smithsonian Institution, Washington DC, USA, and Sorbonne, Pierre & Marie Curie University Paris, France
5University of Hawaii at Mānoa, Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, Honolulu, HI 96822, USA
6National Institute of Marine Geology and Geoecology (GeoEcoMar), Str. Dimitrie Onciul Nr. 23, 024053 Bucharest, Romania
7Nanjing University, School of Earth Sciences and Engineering, Hankou Road 22, Nanjing 210093, PR China
8Middle East Technical University, Department of Geological Engineering, 06531 Ankara, Turkey
9The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway Stop C9000, Austin, TX 78712-1722, USA
10Kazan Federal University, Department of Paleontology and Stratigraphy, Kremlyovskaya str. 4/5, Kazan 420008, Russia

Tài liệu tham khảo

Abramovich, 2003, Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 202, 1, 10.1016/S0031-0182(03)00572-8 Alley, 2003, First known Cretaceous glaciation: Livingston Tillite Member of the Cadnaowie Formation, South Australia, Aust. J. Earth Sci., 50, 139, 10.1046/j.1440-0952.2003.00984.x Alley, 2015, Oceanic forcing of ice sheet retreat: West Antarctica, Annu. Rev. Earth Planet. Sci., 43, 7.1, 10.1146/annurev-earth-060614-105344 Batenburg, 2014, An astronomical time scale for the Maastrichtian based on the Zumaia and Sopelana sections (Basque country, northern Spain), J. Geol. Soc., 171, 165, 10.1144/jgs2013-015 Bevis, 2012, Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change, Proc. Natl. Acad. Sci., 109, 11944, 10.1073/pnas.1204664109 Boulila, 2011, On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences, Earth Sci. Rev., 109, 94, 10.1016/j.earscirev.2011.09.003 Bowman, 2013, Late Cretaceous winter sea ice in Antarctica?, Geology, 41, 1227, 10.1130/G34891.1 Broeker, 1991, The great ocean conveyor, Oceanography, 4, 79, 10.5670/oceanog.1991.07 Burton, 1987, Out of our depth: on the impossibility of fathoming eustasy from the stratigraphic record, Earth Sci. Rev., 24, 237, 10.1016/0012-8252(87)90062-6 Caffrey, 2013, Planning for the impact of sea-level rise on U.S. national parks, Park. Sci., 30, 6 Catuneanu, 2011, Sequence stratigraphy: methodology and nomenclature, Newsl. Stratigr., 44, 173, 10.1127/0078-0421/2011/0011 Cazenave, 2014, Sea level rise and its coastal impacts, Earth's Future, 2, 15, 10.1002/2013EF000188 Cazenave, 2010, Contemporary sea level rise, Ann. Rev. Mar. Sci., 2, 145, 10.1146/annurev-marine-120308-081105 Chao, 2008, Impact of artificial reservoir water impoundment on global sea level, Science, 320, 212, 10.1126/science.1154580 Church, 2010, Ocean temperature and salinity contributions to global and regional sea-level change, 143 Church, 2013, Chapter 13: Sea Level Change, 1137 Cloetingh, 2015, Inherited landscapes and sea level change, Science, 347, 10.1126/science.1258375 Cloetingh, 1985, On a tectonic mechanism for regional sea level variations, Earth Planet. Sci. Lett., 75, 157, 10.1016/0012-821X(85)90098-6 Conrad, 2013, The solid Earth's influence on sea-level, GSA Bull., 125, 1027, 10.1130/B30764.1 Conrad, 1997, Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets, Geophys. Res. Lett., 24, 1503, 10.1029/97GL01338 Conrad, 2009, Influence of dynamic topography on sea level and its rate of change, Lithosphere, 1, 110, 10.1130/L32.1 Crowley, 2011, On the relative influence of heat and water transport on planetary dynamics, Earth Planet. Sci. Lett., 310, 380, 10.1016/j.epsl.2011.08.035 Dewey, 1997, Sea-level changes: mechanisms, magnitudes and rates, SEPM Spec. Publ., 58, 95 El Raey, 1999, Adaption to the impacts of sea level rise in Egypt, Clim. Res., 12, 117, 10.3354/cr012117 Elster, 1974, History of limnology, Mitt. Int. Ver. Theor. Angew. Limnol. (Int. Assoc. Theor. Appl. Limnol.), 20, 7 Emery, 1991 Engelhart, 2011, Holocene sea level changes along the United States' Atlantic Coast, Oceanography, 24, 70, 10.5670/oceanog.2011.28 Farrell, 1976, On postglacial sea level, Geophys. J. R. Astron. Soc., 46, 647, 10.1111/j.1365-246X.1976.tb01252.x Fiedler, 2010, Spatial variability of sea level rise due to water impoundment behind dams, Geophys. Res. Lett., 37, L12603, 10.1029/2010GL043462 Flament, 2013, A review of observations and models of dynamic topography, Lithosphere, 5, 189, 10.1130/L245.1 Flögel, 2011, Cool episodes in the Cretaceous — exploring the effects of physical forcings on Antarctic snow accumulation, Earth Planet. Sci. Lett., 307, 279, 10.1016/j.epsl.2011.04.024 Föllmi, 2012, Early Cretaceous life, climate and anoxia, Cretac. Res., 35, 230, 10.1016/j.cretres.2011.12.005 Friedrich, 2008, Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean, Nat. Geosci., 1, 453, 10.1038/ngeo217 Friedrich, 2012, Evolution of middle to Late Cretaceous oceans — a 55m.y. record of Earth's temperature and carbon cycle, Geology, 40, 107, 10.1130/G32701.1 Gale, 1996, Turonian correlation and sequence stratigraphy of the Chalk in southern England, Geol. Soc. Lond., Spec. Publ., 103, 177, 10.1144/GSL.SP.1996.103.01.10 Gale, 2002, Global correlation of Cenomanian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level, Geology, 30, 291, 10.1130/0091-7613(2002)030<0291:GCOCUC>2.0.CO;2 Gehrels, 2015, Sea level in time and space: revolutions and inconvenient truths, J. Quat. Sci., 30, 131, 10.1002/jqs.2771 Gleick, 1996, Water resources, 817 Gradstein, 2012 Grossman, 2012, Applying Oxygen Isotope Paleothermometry in Deep Time, 18, 39 Gurnis, 1990, Bounds on global dynamic topography from Phanerozoic flooding of continental platforms, Nature, 344, 754, 10.1038/344754a0 Gurnis, 1993, Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs, Nature, 364, 589, 10.1038/364589a0 Hager, 1985, Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541, 10.1038/313541a0 Hallberg, 2013, Sensitivity of twenty-first-century global-mean steric sea level rise to ocean model formulation, J. Clim., 26, 2947, 10.1175/JCLI-D-12-00506.1 Haq, 2014, Cretaceous eustasy revisited, Glob. Planet. Chang., 113, 44, 10.1016/j.gloplacha.2013.12.007 Haq, 2005, Phanerozoic cycles of sea-level change on the Arabian Platform, Geoarabia, 10, 127, 10.2113/geoarabia1002127 Haq, 2008, A chronology of Paleozoic sea-level changes, Science, 322, 64, 10.1126/science.1161648 Haq, 1987, Chronology of fluctuating sea levels since the Triassic, Science, 235, 1156, 10.1126/science.235.4793.1156 Hardenbol, 1998, Mezozoic and Cenozoic sequence chronostratigraphic framework of European basins, 60, 763 Harig, 2012, Mapping Greenland's mass loss in space and time, Proc. Natl. Acad. Sci., 109, 19934, 10.1073/pnas.1206785109 Harrison, 1990, Long-term eustasy and epeirogeny in continents, 141 Harrison, 1981, Sea level variations, global sedimentation rates and the hypsographic curve, Earth Planet. Sci. Lett., 54, 1, 10.1016/0012-821X(81)90064-9 Hart, 1980, A water depth model for the evolution of the planktonic foraminiferida, Nature, 286, 252, 10.1038/286252a0 Hart, 2016, The Cretaceous/Paleogene boundary: foraminifera, sea grasses, sea level change and sequence stratigraphy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 420, 10.1016/j.palaeo.2015.06.046 Hasegawa, 2012, Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse, Clim. Past, 8, 1323, 10.5194/cp-8-1323-2012 Hay, 1996, Tectonics and climate, Geol. Rundsch., 85, 409, 10.1007/BF02369000 Hay, 2008, Evolving ideas about the Cretaceous climate and ocean circulation, Cretac. Res., 29, 725, 10.1016/j.cretres.2008.05.025 Hay, 2011, Can humans force a return to a “Cretaceous” climate?, Sediment. Geol., 235, 5, 10.1016/j.sedgeo.2010.04.015 Hay, 2013 Hay, 2012, New thoughts about the Cretaceous climate and oceans, Earth Sci. Rev., 115, 262, 10.1016/j.earscirev.2012.09.008 Hay, 1990, Could possible changes in global groundwater reservoir cause eustatic sea level fluctuations?, 161 Hay, 1997, Climate: is the past the key to the future?, Geol. Rundsch., 86, 417, 10.1007/s005310050155 Hay, 2015, Probabilistic reanalysis of twentieth-century sea-level rise, Nature, 517, 481, 10.1038/nature14093 Hays, 1974, Variations in the Earth's orbit: Pacemaker of the ice ages, Science, 194, 1121, 10.1126/science.194.4270.1121 Hennebert, 2009, Cyclostratigraphy and chronometric scale in the Campanian–Lower Maastrichtian: the Abiod Formation at Ellès, central Tunisia, Cretac. Res., 30, 325, 10.1016/j.cretres.2008.07.011 Hilgen, 2015, Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy, 404, 157 Hinnov, 2013, Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences, GSA Bull., 125, 1703, 10.1130/B30934.1 Hinnov, 2012, Chapter 4: Cyclostratigraphy and Astrochronology, 63 Holden, 2011, IUPAC-IUGS common definition and convention on the use of the year as a derived unit of time, Episodes, 34, 39, 10.18814/epiiugs/2011/v34i1/006 Husson, 2011, Astronomical calibration of the Maastrichtian (Late Cretaceous), Earth Planet. Sci. Lett., 305, 328, 10.1016/j.epsl.2011.03.008 Immenhauser, 2005, High-rate sea-level change during the Mesozoic: new approaches to an old problem, Sediment. Geol., 175, 277, 10.1016/j.sedgeo.2004.12.016 Jacob, 2012, Recent contributions of glaciers and ice caps to sea level rise, Nature, 482, 514, 10.1038/nature10847 Jacobs, 1993, Climate induced fluctuations in sea level during non-glacial times, Nature, 361, 710, 10.1038/361710a0 Jacobs, 1995, Milankovitch fluctuations in sea level and recent trends in sea-level change: ice may not always be the answer, 329 Jarvis, 2001, Geochemistry of pelagic and hemipelagic carbonates: criteria for identifying systems tracts and sea-level change, J. Geol. Soc. Lond., 158, 685, 10.1144/jgs.158.4.685 Jenkyns, 2003, Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world, Philos. Trans. R. Soc. London, Ser. A, 361, 1885, 10.1098/rsta.2003.1240 Jensen, 2013, Land water contribution to sea level from GRACE and Jason-1 measurements, J. Geophys. Res., 118, 212, 10.1002/jgrc.20058 Kaminski, 2005, Atlas of paleogene cosmopolitan deep-water agglutinating foraminifera, Grzybowski Found. Spec. Publ., 10, 1 Kasting, 1992, What determines the volume of the oceans?, Earth Planet. Sci. Lett., 109, 507, 10.1016/0012-821X(92)90110-H Kidder, 2010, Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions, Palaeogeogr. Palaeoclimatol. Palaeoecol., 295, 162, 10.1016/j.palaeo.2010.05.036 Kidder, 2012, A human-induced hothouse climate?, GSA Today, 22, 4, 10.1130/G131A.1 Kirschner, 2010, Quantifying extension of passive margins: implications for sea level change, Tectonics, 29, TC4006, 10.1029/2009TC002557 Kominz, 1984, Ocean ridge volumes and sea-level change—an error analysis, 36, 109 Kominz, 2008, Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis, Basin Res., 20, 211, 10.1111/j.1365-2117.2008.00354.x Konikow, 2011, Contribution of global groundwater depletion since 1900 to sea-level rise, Geophys. Res. Lett., 38, L17401, 10.1029/2011GL048604 Korenaga, 2011, Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth, J. Geophys. Res., 116, B12403, 10.1029/2011JB008410 Koutsoukos, 1990, Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe Basin, Brazil, Trans. R. Soc. Edinb. Earth Sci., 81, 221, 10.1017/S0263593300005253 Kuiper, 2008, Synchronizing rock clocks of Earth history, Science, 320, 500, 10.1126/science.1154339 Laskar, 2011, La2010: a new orbital solution for the long-term motion of the Earth, Astron. Astrophys., 532, A89, 10.1051/0004-6361/201116836 Li, 2000, Late Cretaceous sea level changes in Tunisia: a multi-disciplinary approach, J. Geol. Soc. Lond., 157, 447, 10.1144/jgs.157.2.447 Liu, 2013, Sea level variations during snowball Earth formation: 1. A preliminary analysis, J. Geophys. Res. Solid Earth, 118, 4410, 10.1002/jgrb.50293 Locklair, 2008, Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: a Coniacian–Santonian orbital timescale, Earth Planet. Sci. Lett., 269, 540, 10.1016/j.epsl.2008.03.021 Lovell, 2010, A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection, J. Geol. Soc. Lond., 167, 637, 10.1144/0016-76492009-127 MacLeod, 2013, A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera, Geology, 41, 1083, 10.1130/G34510.1 2012, Marine rapid environmental/climatic change in the cretaceous greenhouse world, Cretac. Res., 38, 1, 10.1016/j.cretres.2012.04.012 Martinez, 2013, Astrochronology of the Valanginian Stage from reference sections (Vocontian Basin, France) and palaeoenvironmental implications for the Weissert Event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 376, 91, 10.1016/j.palaeo.2013.02.021 Martinez, 2015, Astrochronology of the Valanginian–Hauterivian stages (Early Cretaceous): chronological relationships between the Paraná–Etendeka large igneous province and the Weissert and the Faraoni events, Glob. Planet. Chang., 131, 158, 10.1016/j.gloplacha.2015.06.001 Miller, 2005, The Phanerozoic record of global sea-level change, Science, 310, 1293, 10.1126/science.1116412 Miller, 2005, Visions of ice sheets in a greenhouse world, Mar. Geol., 217, 215, 10.1016/j.margeo.2005.02.007 Miller, 2011, A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records, Oceanography, 24, 40, 10.5670/oceanog.2011.26 Miller, 2009, Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation, 452, 169 Milly, 2010, Terrestrial water-storage contributions to sea-level rise and variability, 226 Milne, 1998, Postglacial sea-level change on a rotating Earth, Geophys. J. Int., 133, 1, 10.1046/j.1365-246X.1998.1331455.x Milne, 2008, Searching for eustasy in deglacial sea-level histories, Quat. Sci. Rev., 27, 2292, 10.1016/j.quascirev.2008.08.018 Mitchum, 2010, Chapter 5 — Modern sea-level-change estimates, 122 Mitrovica, 2003, On post-glacial sea level: I. General theory, Geophys. J. Int., 154, 253, 10.1046/j.1365-246X.2003.01942.x Mitrovica, 1991, On postglacial geoid subsidence over the equatorial oceans, J. Geophys. Res. Solid Earth, 96, 20053, 10.1029/91JB01284 Mitrovica, 2001, Recent mass balance of polar ice sheets inferred from patterns of global sea-level change, Nature, 409, 1026, 10.1038/35059054 Moore, 2013, Carbonate Reservoirs — Porosity and Diagenesis in a Sequence Stratigraphic Framework, Dev. Sedimentol, 67, 1 Moriya, 2007, Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise, Geology, 35, 615, 10.1130/G23589A.1 Moucha, 2008, Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform, Earth Planet. Sci. Lett., 271, 101, 10.1016/j.epsl.2008.03.056 Müller, 2008, Long-term sea-level fluctuations driven by ocean basin dynamics, Science, 319, 1357, 10.1126/science.1151540 Murray, 1991 Nicholls, 2010, Impacts of and responses to sea-level rise, 17 Nicholls, 2010, Sea-level rise and its impact on coastal zones, Science, 328, 1517, 10.1126/science.1185782 Nielsen, 2012, Crustal uplift due to ice mass variability on Upernavik Isstrøm, west Greenland, Earth Planet. Sci. Lett., 353–354, 182, 10.1016/j.epsl.2012.08.024 Ogg, 2012, Geomagnetic Polarity Time Scale, 85 Olde, 2015, Geochemical and palynological sea-level proxies in hemipelagic sediments: a critical assessment from the Upper Cretaceous of the Czech Republic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 435, 222, 10.1016/j.palaeo.2015.06.018 Petersen, 2010, Small-scale mantle convection produces stratigraphic sequences in sedimentary basins, Science, 329, 827, 10.1126/science.1190115 Piecuch, 2014, Mechanisms of global-mean steric sea level change, J. Clim., 27, 824, 10.1175/JCLI-D-13-00373.1 Pitman, 1978, Relationship between eustasy and stratigraphic sequences of passive margins, Geol. Soc. Am. Bull., 89, 1389, 10.1130/0016-7606(1978)89<1389:RBEASS>2.0.CO;2 Pokhrel, 2012, Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage, Nat. Geosci., 5, 389, 10.1038/ngeo1476 Price, 2010, Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: transient glacial temperatures during the Cretaceous greenhouse, Geology, 38, 251, 10.1130/G30593.1 Rahmstorf, 2015, Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nat. Clim. Chang., 5, 475, 10.1038/nclimate2554 Robson, 2014, Atlantic overturning in decline?, Nat. Geosci., 7, 2, 10.1038/ngeo2050 Rose, 2013, Ocean heat transport and water vapor greenhouse in a warm equable climate: a new look at the low gradient paradox, J. Clim., 26, 2117, 10.1175/JCLI-D-11-00547.1 Ruban, 2010, No global-scale transgressive-regressive cycles in the Thanetian (Paleocene): evidence from interregional correlation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 295, 226, 10.1016/j.palaeo.2010.05.040 Sageman, 2006, Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype, Geology, 34, 125, 10.1130/G22074.1 Sageman, 2014, Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA, Geol. Soc. Am. Bull, 126, 956, 10.1130/B30929.1 Saltzman, 2012, Carbon isotope stratigraphy, 207 Sames, 2015, Integrating palaeoenvironmental and climate cyclicities — optimizing the stratigraphic framework in the non-marine Lower Cretaceous, Geophys. Res. Abstr., 17 Sames, 2012, Latest Jurassic to Cretaceous non-marine ostracod biostratigraphy: unde venis, quo vadis?, J. Stratigr., 36, 267 Sandu, 2011, The effects of deep water cycling on planetary thermal evolution, J. Geophys. Res., 116, B12404, 10.1029/2011JB008405 Şengör, 2015, The dounder of modern geology died 100years ago: the scientific work and legacy of Eduard Suess, Can. Geosci., 42, 181, 10.12789/geocanj.2015.42.070 Shackleton, 1975, Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotopic analyses in DSDP Sites 277, 279, and 281, Initial Rep. Deep Sea Drill. Proj., 29, 743 Shennan, 2015, Chapter 2 — Handbook of sea-level research: framing research questions, 2 Shennan, 2002, Holocene land and sea-level changes in Great Britain, J. Quat. Sci., 17, 511, 10.1002/jqs.710 Shennan, 2012, Late Holocene vertical land motion and relative sea-level changes: lessons from the British Isles, J. Quat. Sci., 27, 64, 10.1002/jqs.1532 Simmons, 2011, The ups and downs of eustatic sea level change, GEO ExPro, 8, 64 Simmons, 2012, Sequence stratigraphy and sea-level change, 239 Skelton, 2003 Slangen, 2014, Comparing tide gauge observations to regional patterns of sea-level change (1961-2003), Earth Syst. Dyn., 5, 243, 10.5194/esd-5-243-2014 Sliter, 1972, Cretaceous bathymetric distribution of benthic foraminifers, J. Foraminifer. Res., 2, 167, 10.2113/gsjfr.2.4.167 Spasojevic, 2012, Sea level and vertical motion of continents from dynamic Earth models since the Late Cretaceous, Am. Assoc. Pet. Geol. Bull., 96, 2037 Sprovieri, 2013, Late Cretaceous orbitally-paced carbon isotope stratigraphy from the Bottaccione Gorge (Italy), Palaeogeogr. Palaeoclimatol. Palaeoecol., 379–380, 81, 10.1016/j.palaeo.2013.04.006 Steffen, 2010, Cryospheric contributions to sea-level rise and variability, 177 Stoll, 1996, Evidence for glacial control of rapid sealevel changes in the Early Cretaceous, Science, 272, 1771, 10.1126/science.272.5269.1771 Suarez, 2011, Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: the mid-Cretaceous water bearer revisited, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307, 301, 10.1016/j.palaeo.2011.05.027 Suess, 1888, Das Antlitz der Erde, Vol. 2 Syvitski, 2009, Sinking deltas due to human activities, Nat. Geosci., 2, 681, 10.1038/ngeo629 Velinga, 2002, Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Clim. Chang., 54, 251, 10.1023/A:1016168827653 Voigt, 2010, Cyclostratigraphy of the reference section for the Cretaceous white chalk of northern Germany, Lägerdorf–Kronsmoor: a late Campanian–early Maastrichtian orbital time scale, Palaeogeogr. Palaeoclimatol. Palaeoecol, 287, 67, 10.1016/j.palaeo.2010.01.017 Wada, 2010, Global depletion of groundwater resources, Geophys. Res. Lett., 37, L20402, 10.1029/2010GL044571 Wada, 2012, Past and future contribution of global groundwater depletion to sea-level rise, Geophys. Res. Lett., 39, L09402, 10.1029/2012GL051230 Wagreich, 2009, Stratigraphic constraints on climate control of Lower Cretaceous oceanic red beds in the Northern Calcareous Alps (Austria), 91, 91 Wagreich, 2012, Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone, Cretac. Res., 38, 80, 10.1016/j.cretres.2012.04.006 Wagreich, 2014, Eustasy, its controlling factors, and the limno-eustatic hypothesis — concepts inspired by Eduard Suess, J. Aust. Earth Sci., 107, 115 Waltham, 2015, Milankovitch period uncertainties and their impact on cyclostratigraphy, J. Sediment. Res., 85, 990, 10.2110/jsr.2015.66 Wang, 2009, Unlocking a Cretaceous geologic and geophysical puzzle: scientific drilling of Songliao Basin in northeast China, Lead. Edge, 28, 340, 10.1190/1.3104081 Wendler, 2016, What drove cyclic sea-level fluctuations during the mid-Cretaceous greenhouse climate?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 412, 10.1016/j.palaeo.2015.08.029 Wendler, 2011, Drivers of cyclic sea level changes during the Cretaceous greenhouse: a new perspective from the Levant Platform, Geol. Soc. Am. Abstr. Programs, 43, 376 Wendler, 2014, A million-year-scale astronomical control on Late Cretaceous sea-level, Newsl. Stratigr., 47, 1, 10.1127/0078-0421/2014/0038 Wendler, 2016, Link between cyclic eustatic sea-level change and continental weathering: evidence for aquifer-eustasy in the Cretaceous, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 430, 10.1016/j.palaeo.2015.08.014 Wetzel, 2001 Widmark, 1997, Benthic foraminiferal faunas and trophic regimes at the terminal Cretaceous Tethyan seafloor, Palaios, 12, 354, 10.2307/3515335 Wilmsen, 2013, Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt, Newsl. Stratigr., 46, 23, 10.1127/0078-0421/2013/0030 Wissler, 2004, Calibration of the Early Cretaceous time scale: a combined chemostratigraphic and cyclostratigraphic approach to the Barremian-Aptian interval Campania Apennines and southern Alps (Italy), 81, 123 Wolfgring, 2016, Assessing pelagic palaeoenvironments using foraminiferal assemblages — a case study from the late Campanian Radotruncana calcarata Zone (Upper Cretaceous, Austrian Alps), Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 467, 10.1016/j.palaeo.2015.08.008 Woodworth, 2015, Changes in the mesoscale variability and in extreme sea levels over two decades as observed by satellite altimetry, J. Geophys. Res. Oceans, 120, 64, 10.1002/2014JC010363 Woodworth, 2009, Evidence for the accelerations of sea level on multi-decade and century timescales, Int. J. Climatol., 29, 777, 10.1002/joc.1771 Wu, 2013, Astrochronology for the Early Cretaceous Jehol Biota in northeastern China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 385, 221, 10.1016/j.palaeo.2013.05.017 Xu, 2006, Global reconstructions of Cenozoic sea floor ages: implications for bathymetry and sea level, Earth Planet. Sci. Lett., 243, 552, 10.1016/j.epsl.2006.01.010 Yilmaz, 2001, Use of sedimentary structures in the recognition of sequence boundaries in the Upper Jurassic (Kimmeridgian) – Upper Cretaceous (Cenomanian) peritidal carbonates of the Fele (Yassıbel) area (Western Taurides, Turkey), Int. Geol. Rev., 43, 736, 10.1080/00206810109465045 Yilmaz, 2006, Cyclic palaeokarst surfaces in Aptian peritidal carbonate successions (Taurides, southwest Turkey): internal structure and response to mid-Aptian sea-level fall, Cretac. Res., 27, 814, 10.1016/j.cretres.2006.03.011 Zorina, 2014, Sedimentation regime and accommodation space in the Middle Jurassic–Lower Cretaceous on the eastern Russian Plate, Russ. Geol. Geophys., 55, 1195, 10.1016/j.rgg.2014.09.005 Zorina, 2008, How global are the Jurassic–Cretaceous unconformities?, Terra Nova, 20, 341, 10.1111/j.1365-3121.2008.00826.x