Review: Opportunities for simultaneous energy/materials conversion of carbon dioxide and plastics in metallurgical processes
Tài liệu tham khảo
Forschungsverbund Berlin e.V
Jess Murray
Ee Ling Ng
PlasticsEurope AISBL
Lavoie, 2014, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front. Chem., 2
EPA (United States Environmental Protection Agency)
Energy Technology Perspectives, 2014
Alper, 2017, CO2 utilization: developments in conversion processes, Petroleum, 3, 109, 10.1016/j.petlm.2016.11.003
Arakawa, 2001, Catalysis research of relevance to carbon management: progress, challenges, and opportunities, Chem. Rev., 101, 953, 10.1021/cr000018s
Sakakura, 2007, Transformation of carbon dioxide, Chem. Rev., 107, 2365, 10.1021/cr068357u
Centi, 2009, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today, 148, 191, 10.1016/j.cattod.2009.07.075
Olah, 2009, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487, 10.1021/jo801260f
Mikkelsen, 2010, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43, 10.1039/B912904A
Dean, 1979, 9-4
Ritter, 2018, New catalyst puts CO2 to good use, C&EN Global Enterprise, 96, 8, 10.1021/cen-09601-scicon2
Zheng, 2017, Energy related CO2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies, Nano Energy, 40, 512, 10.1016/j.nanoen.2017.08.049
BINE Information service
Jiang, 2010, Turning carbon dioxide into fuel, Philos Trans A Math Phys Eng Sci, 368, 3343, 10.1098/rsta.2010.0119
Mohamad, 2018, A mini-review on CO2 reforming of methane, Prog. Petrochem. Sci., 2
Tomishige, 1998, Development of active and stable nickel-magnesia solid solution catalysts for CO2 reforming of methane, Adv. Chem. Convers. Mitigating Carbon Dioxide, 114, 375
Bharadwaj, 1995, Catalytic partial oxidation of natural gas to syngas, Fuel Process. Technol., 42, 109, 10.1016/0378-3820(94)00098-E
Pan, 2007, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater., 6, 507, 10.1038/nmat1916
Inui, 1991, Effective conversion of carbon dioxide and hydrogen to hydrocarbons, Catal. Today, 10, 95, 10.1016/0920-5861(91)80077-M
Wei, 2017, Erratum: directly converting CO2 into a gasoline fuel, Nat. Commun., 8
Lu, 2014, A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun., 5, 3242, 10.1038/ncomms4242
Rauch, 2017, Zinc and magnesium catalysts for the Hydrosilylation of carbon dioxide, J. Am. Chem. Soc., 139, 18162, 10.1021/jacs.7b10776
Tan, 2017, Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation, Chem. Eng. J., 308, 248, 10.1016/j.cej.2016.09.050
Olivo, 2017, CO2 Photoreduction to Solar Fuels: Basis Effect on TiO2 Photocatalysts
Tanaka, 2002, Multi-electron reduction of CO2 via Ru-CO2, -C(O)OH, -CO, -CHO, and -CH2OH species, Coord. Chem. Rev., 226, 211, 10.1016/S0010-8545(01)00434-9
Scibioh, 1998, Electrocatalytic reduction of carbon dioxide: its relevance and importance, J. Sci. Ind. Res., 57, 111
Fischer, 1981, The production of oxalic-acid from CO2 and H2O, J. Appl. Electrochem., 11, 743, 10.1007/BF00615179
Bocarsly, 1993, The efficient reduction of CO2 to methanol at platinum and palladium electrodes using a pyridinium catalyst
Sullivan, 1989, Reduction of carbon dioxide with platinum metals electrocatalysts, Platin. Met. Rev., 33, 2
Devasahayam, 1995, The particle characteristics of precipitated magnesium carbonate, Miner. Metal. Process., 12, 157e160
Devasahayam, 2007, Interpretation of crystal size distribution to derive the nucleation and growth rates in MgCO3 system, Institut. Min. Metal. Trans. Sect. C Miner. Process. Extr. Metal., 116, 171e176
Sheila, 1991, Studies on the extraction of magnesia from low grade magnesites by carbon dioxide pressure leaching of hydrated magnesia, Miner. Eng., 4, 79e88, 10.1016/0892-6875(91)90120-K
Sheila, 1989, Precipitation of magnesium carbonate, Hydrometallurgy, 22, 249e258, 10.1016/0304-386X(89)90055-8
Lambertz, 2009, vol. 59, 112
Uliasz-Bocheńczyk, 2009, Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland, Energy Procedia, 1, 4873, 10.1016/j.egypro.2009.02.316
Sun, 2012, Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash, J. Hazard. Mater., 209-210, 458, 10.1016/j.jhazmat.2012.01.053
Hosseini, 2016, Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – process simulation and techno-economic analysis, Appl. Energy, 175, 54, 10.1016/j.apenergy.2016.04.093
Tamilselvi, 2016, Direct mineral carbonation of coal fly ash for CO2 sequestration, J. Clean. Prod., 112 pp, 4173, 10.1016/j.jclepro.2015.05.145
Motiei, 2001, Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction, J. Am. Chem. Soc., 123, 8624, 10.1021/ja015859a
Pilz, 2014, Study-criteria for eco-efficient (sustainable) plastic recycling and waste management, Report Sept. 11th, 2014, 1130
Haig, 2013
Pastine
Plastics Industry Association
Han, 2018, Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed, Carbon Resour. Convers., 1, 109, 10.1016/j.crcon.2018.06.003
Nakanoh, 2001, Ewaste treatment using induction heated pyrolysis, Fuji Electric Rev., 47, 69
Achilias, 2007, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), J. Hazard. Mater., 149, 536, 10.1016/j.jhazmat.2007.06.076
Almeida, 2016, Thermal and catalytic pyrolysis of plastic waste, Polímeros, 26, 44, 10.1590/0104-1428.2100
Marcilla, 2009, Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions, Appl. Catal. B Environ., 86, 78, 10.1016/j.apcatb.2008.07.026
Dong, 2010, Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed, Fuel Process. Technol., 91, 882, 10.1016/j.fuproc.2009.12.012
Zhang, 2013, Technical review on thermochemical conversion based on decoupling for solid carbonaceous fuels, Energy Fuel, 27, 1951, 10.1021/ef400118b
Zhang, 2013, Recent studies on chemical engineering fundamentals for fuel pyrolysis and gasification in dual fluidized bed, Ind. Eng. Chem. Res., 52, 6283, 10.1021/ie303199g
Zhang, 2010, Decoupling gasification: approach principle and technology justification, Energy Fuel, 24, 6223, 10.1021/ef101036c
Wei, 2002, Physical mapping of fluidization regimes – the EMMS approach, Chem. Eng. Sci., 57, 3993, 10.1016/S0009-2509(02)00234-8
Kato, 2003, Waste plastics recycling process using coke ovens, J. Mater. Cycles Waste Manag., 5, 98, 10.1007/s10163-003-0089-3
Li, 2013, Decoupled thermochemical conversion – preface, Fuel, 112, 607, 10.1016/j.fuel.2013.06.027
Wollny, 2001, Comparison of plastic 779 packaging waste management options: feedstock recycling versus energy 780 recovery in Germany, J. Ind. Ecol., 5, 49, 10.1162/108819801760049468
García, 2014, Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines, Science., 344, 732, 10.1126/science.1251484
Schneiderman, 2016, Chemically recyclable biobased polyurethanes, ACS Macro Lett., 5, 515, 10.1021/acsmacrolett.6b00193
Ma, 2016, Hard and flexible, degradable thermosets from renewable bioresources with the assistance of water and ethanol, Macromolecules., 49, 3780, 10.1021/acs.macromol.6b00594
Garcia, 2017, The future of plastics recycling, Science., 358, 870, 10.1126/science.aaq0324
Pimenta, 2011, Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook, Waste Manag., 31, 378e92, 10.1016/j.wasman.2010.09.019
Wertz, 2016, Thermally conductive-silicone composites with thermally reversible cross-links, ACS Appl. Mater. Interfaces, 8, 13669, 10.1021/acsami.6b03065
Röttger, 2017, High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis, Science., 356, 62, 10.1126/science.aah5281
Luijsterburg, 2015
Takeshi, 1997
ECO U.S.A
VOEST, 1997, 1997
Demirbas, 2004, Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons, J. Anal. Appl. Pyro., 72, 97, 10.1016/j.jaap.2004.03.001
Ono, 1987, Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites, J. Jpn. Petrol. Inst., 30, 77, 10.1627/jpi1958.30.77
Ida, 2009, Current status of plastics recycling in Japan
Jamradloedluka, 2013, Characterization and utilization of char derived from fast pyrolysis of plastic wastes, 24th DAAAM international symposium on intelligent manufacturing and automation, Proc. Eng.., 69, 1437, 10.1016/j.proeng.2014.03.139
Arens, 2010, Energy efficiency and CO2 emissions reduction in the steel industry, 1
Roubíček, 2007, Decreasing CO2 emissions in metallurgy, Metalurgija, 46, 53
Kundak, 2009, CO2 emissions in the steel industry, METABK, 48, 193
Denkstatt/GUA, 2007
Carpenter, 2012, 67
Ogaki, 2001, Recycling of waste plastic packaging in a blast furnace system, NKK Technical Rev., 84, 1
Asanuma, 2000
Fujikaoka, 1997, Fuel and, Energy., 25, 18
Asanuma, 1998, J. Jpn. Inst. Energy, 77, 423, 10.3775/jie.77.423
Japan Plastics Industry Federation, 2006, 37
Asanuma, 2009, Establishment of advanced recycling technology for waste plastics in blast furnace, JFE Technical Report., 13, 34
Atech Group, 2001, 180
Clauzade, 2006, 8
Sekine, 2009, CO2 reduction potentials by utilizing waste plastics in steel works, Int. J. Life Cycle Assess., 14, 122, 10.1007/s11367-008-0055-3
Worrell, 2010, 158
Ueki, 2008, Reaction behaviour during heating waste plastic materials and iron oxide composites, ISIJ Int., 48, 1670, 10.2355/isijinternational.48.1670
Melendi-Espina, 2011, Evolution of volatile products of coal and plastic wastes during co-pyrolysis
Efika, 2015, Products from the high temperature pyrolysis of RDF at slow and rapid heating rates, J. Anal. Appl. Pyrolysis, 112, 14, 10.1016/j.jaap.2015.01.004
von Bogdandy, 1967
Bae, 1996
Ross, 1980, 9
Chatterjee, 2010, 353
Shuye, 1997
Carpenter, 2010, Injection of coal and waste plastics in blast furnaces, 58
Bernasowski, 2014, Theoretical study of the hydrogen influence on Iron oxides reduction at the blast furnace process, Steel Res. Int., 85, 670, 10.1002/srin.201300141
Bandyopadhyay, 2003, A study on dissolution kinetics of carbon in liquid iron bath, Chem. Eng. J., 94, 79, 10.1016/S1385-8947(02)00030-X
Mondal, 2004, Reduction of Iron oxide in carbon monoxide atmosphere, reaction controlled kinetics, Fuel Process. Technol., 86, 33, 10.1016/j.fuproc.2003.12.009
Benchiheub, 2010, Elaboration of iron powder from mill scale, J. Mater. Environ. Sci., 1, 267
Bale, 2002
Devasahayam, 2018, Sustainable development of selective iron carbide, silicon carbide and ferrosilicon (low temperature) phases during iron ore reduction using only polymers, Sustain. Mater. Technol., 16, 23
Devasahayam, 2018, A novel iron ore pelletization for increased strength under ambient conditions, Sustain. Mater. Technol., 17
MIDREX NG™
Devasahayam, 2018, Thermal decomposition of magnesium carbonate with biomass and plastic wastes for simultaneous production of hydrogen and carbon avoidance, J. Clean. Prod., 174, 1089, 10.1016/j.jclepro.2017.11.017
Sheila, 1993, Thermal analysis studies on the decomposition of magnesite, Int. J. Miner. Process., 37, 73e88, 10.1016/0301-7516(93)90006-V
European IPPC Bureau at the Institute for Prospective Technological Studies
Nakanoh, 2001, Waste treatment using induction heated pyrolysis, Fuji Electr. Rev., 47, 69
Devasahayam, 2002, The radiation chemistry of ultem as revealed by ESR, Radiat. Phys. Chem., 64, 299, 10.1016/S0969-806X(01)00498-4
I. Brereton., S. Devasahayam., D. J. T. Hill., A. Whittaker, Towards Identifying the New Structures Formed on the -Radiolysis of Ultem (NMR) - Radiation Physics and Chemistry- 2004, vol. 69, 65–77.
Devasahayam, 2006, FT-Raman studies of a range of polyimides subjected to high-energy radiations at room and elevated temperature, J. Appl. Polym. Sci., 101, 1575, 10.1002/app.23547
Hanrot, 2009, CO2 mitigation for steelmaking using charcoal and plastic wastes as reducing agents and secondary raw materials, 4
Baldauf-Sommerbauer, 2016, Reductive calcination of mineral magnesite: hydrogenation of carbon dioxide without catalysts, Chem. Eng. Technol., 39, 2035, 10.1002/ceat.201600094
Zuo, 2011, Green pyrolysis of used printed wiring board powder, 17
Ewijk, 2016, Limitations of the waste hierarchy for achieving absolute reductions in material throughput, J. Clean. Prod., 132, 122, 10.1016/j.jclepro.2014.11.051