Reversibly modulating a conformation-adaptive fluorophore in [2]catenane
Tài liệu tham khảo
Callan, 2005, Luminescent sensors and switches in the early 21st century, Tetrahedron, 61, 8551, 10.1016/j.tet.2005.05.043
Van de Linde, 2014, How to switch a fluorophore: from undesired blinking to controlled photoswitching, Chem. Soc. Rev., 43, 1076, 10.1039/C3CS60195A
Sedgwick, 2018, Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents, Chem. Soc. Rev., 47, 8842, 10.1039/C8CS00185E
Cao, 2019, Coumarin-based small-molecule fluorescent chemosensors, Chem. Rev., 119, 10403, 10.1021/acs.chemrev.9b00145
Wu, 2020, Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents, Chem. Soc. Rev., 49, 5110, 10.1039/C9CS00318E
Liu, 2018, All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes, Nat. Rev. Mater., 3, 18020, 10.1038/natrevmats.2018.20
Zhang, 2017, Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes, Nat. Commun., 8, 987, 10.1038/s41467-017-01137-8
Cao, 2015, A fluorescent bistable [2] rotaxane molecular switch on SiO2 nanoparticles, Chem. Commun., 51, 4973, 10.1039/C4CC09976A
Lou, 2015, Redox-responsive fluorescent probes with different design strategies, Acc. Chem. Res., 48, 1358, 10.1021/acs.accounts.5b00009
Langton, 2014, Rotaxane and catenane host structures for sensing charged guest species, Acc. Chem. Res., 47, 1935, 10.1021/ar500012a
Nakatani, 2010, Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2] catenane and control of its structure, Angew. Chem. Int. Ed. Engl., 49, 5463, 10.1002/anie.201002382
Yang, 2014, Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev., 43, 4563, 10.1039/C4CS00051J
Mei, 2015, Aggregation-induced emission: together we shine, united we soar!, Chem. Rev., 115, 11718, 10.1021/acs.chemrev.5b00263
Qian, 2017, Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission, Nat. Chem., 9, 83, 10.1038/nchem.2612
Shao, 2018, Solution and solid-state emission toggling of a photochromic hydrazone, J. Am. Chem. Soc., 140, 12323, 10.1021/jacs.8b07108
Kwok, 2015, Biosensing by luminogens with aggregation-induced emission characteristics, Chem. Soc. Rev., 44, 4228, 10.1039/C4CS00325J
Wang, 2020, Förster resonance energy transfer: an efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications, Matter, 3, 449, 10.1016/j.matt.2020.05.005
Wang, 2020, Color-tunable single-fluorophore supramolecular system with assembly-encoded emission, Nat. Commun., 11, 158, 10.1038/s41467-019-13994-6
Zhang, 2009, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem., 1, 623, 10.1038/nchem.368
Ai, 2019, A platinum(II) molecular hinge with motions visualized by phosphorescence changes, Proc. Natl. Acad. Sci. USA, 116, 13856, 10.1073/pnas.1908034116
Zhang, 2015, Excited-state conformational/electronic responses of saddle-shaped N,N ′-disubstituted-dihydrodibenzo[a,c]phenazines: wide-tuning emission from red to deep blue and white light combination, J. Am. Chem. Soc., 137, 8509, 10.1021/jacs.5b03491
Zhang, 2020, Vibration-induced emission (VIE) of N,N′-disubstituted-dihydribenzo[a,c]phenazines: fundamental understanding and emerging applications, Adv. Funct. Mater., 30, 1902803, 10.1002/adfm.201902803
Zhang, 2018, Tuning the conformation and color of conjugated polyheterocyclic skeletons by installing ortho-methyl groups, Angew. Chem. Int. Ed. Engl., 57, 9880, 10.1002/anie.201806385
Humeniuk, 2018, White-fluorescent dual-emission mechanosensitive membrane probes that function by bending rather than twisting, Angew. Chem. Int. Ed. Engl., 57, 10559, 10.1002/anie.201804662
Chen, 2017, Snapshotting the excited-state planarization of chemically locked N,N′-disubstituted dihydrodibenzo[a,c]phenazines, J. Am. Chem. Soc., 139, 1636, 10.1021/jacs.6b11789
Zhou, 2019, Designed conformation and fluorescence properties of self-assembled phenazine-cored platinum(II) metallacycles, J. Am. Chem. Soc., 141, 5535, 10.1021/jacs.9b01368
Chen, 2019, Molecular cursor caliper: a fluorescent sensor for dicarboxylate dianions, J. Am. Chem. Soc., 141, 14798, 10.1021/jacs.9b07170
Zhang, 2020, The endeavor of vibration-induced emission (VIE) for dynamic emissions, Chem. Sci., 11, 7525, 10.1039/D0SC01591A
Sun, 2020, Diversified excited-state relaxation pathways of donor-linker-acceptor dyads controlled by the bent-to-planar motion of donor, Angew. Chem. Int. Ed. Engl., 59, 18611, 10.1002/anie.202005466
Patterson, 2002, A photoactivatable GFP for selective photolabeling of proteins and cells, Science, 297, 1873, 10.1126/science.1074952
Zimmer, 2002, Green fluorescent protein (GFP): applications, structure, and related photophysical behavior, Chem. Rev., 102, 759, 10.1021/cr010142r
Bruns, 2016
Stoddart, 2017, Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel lecture), Angew. Chem. Int. Ed. Engl., 56, 11094, 10.1002/anie.201703216
Sauvage, 2017, From chemical topology to molecular machines (Nobel lecture), Angew. Chem. Int. Ed. Engl., 56, 11080, 10.1002/anie.201702992
Goujon, 2019, [c2]Daisy chain rotaxanes as molecular muscles, CCS Chem, 1, 83
Erbas-Cakmak, 2015, Artificial molecular machines, Chem. Rev., 115, 10081, 10.1021/acs.chemrev.5b00146
Mena-Hernando, 2019, Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule, Chem. Soc. Rev., 48, 5016, 10.1039/C8CS00888D
David, 2019, A [2]rotaxane-based circularly polarized luminescence switch, J. Am. Chem. Soc., 141, 18064, 10.1021/jacs.9b07143
Chang, 2017, Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles, Nat. Chem., 9, 128, 10.1038/nchem.2608
Ceroni, 2014, Light to investigate (read) and operate (write) molecular devices and machines, Chem. Soc. Rev., 43, 4068, 10.1039/C3CS60400D
Zhang, 2018, Muscle-like artificial molecular actuators for nanoparticles, Chem, 4, 2670, 10.1016/j.chempr.2018.08.030
Rao, 2017, One-pot synthesis of hetero[6]rotaxane bearing three different kinds of macrocycle through a self-sorting process, Chem. Sci., 8, 6777, 10.1039/C7SC03232C
Coutrot, 2008, A new pH-switchable dimannosyl [c2]daisy chain molecular machine, Org. Lett., 10, 3741, 10.1021/ol801390h
Hibbert, 2016, The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis, Chem. Comm., 52, 12792, 10.1039/C6CC03888C
Ashton, 1995, Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules, Angew. Chem. Int. Ed. Engl., 34, 1865, 10.1002/anie.199518651
Spicher, 2020, Robust atomistic modeling of materials, organometallic, and biochemical systems, Angew. Chem. Int. Ed. Engl., 59, 15665, 10.1002/anie.202004239
Coutrot, 2008, A new glycorotaxane molecular machine based on an anilinium and a triazolium station, Chemistry, 14, 4784, 10.1002/chem.200800480
Coutrot, 2015, A focus on triazolium as a multipurpose molecular station for pH-sensitive interlocked crown-ether-based molecular machines, ChemistryOpen, 4, 556, 10.1002/open.201500088
Hänni, 2010, The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis, Chem. Soc. Rev., 39, 1240, 10.1039/B901974J
Meng, 2015, Stepwise motion in a multivalent [2](3)catenane, J. Am. Chem. Soc., 137, 9739, 10.1021/jacs.5b05758
Chen, 2005, A highly selective fluorescent chemosensor for H2PO4-based on a calix [4]arene tetraamide derivative, Eur. J. Org. Chem., 2005, 2468, 10.1002/ejoc.200400832
Yang, 2012, Design and assembly of rotaxane-based molecular switches and machines, Small, 8, 504, 10.1002/smll.201101738
Denis, 2018, A fluorescent ditopic rotaxane ion-pair host, Angew. Chem. Int. Ed. Engl., 57, 5315, 10.1002/anie.201713105