Reversibly modulating a conformation-adaptive fluorophore in [2]catenane

Chem - Tập 7 - Trang 1544-1556 - 2021
Shun Yang1, Cai-Xin Zhao1, Stefano Crespi2, Xin Li3, Qi Zhang1, Zhi-Yun Zhang1, Ju Mei1, He Tian1, Da-Hui Qu1
1Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
2Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
3Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden

Tài liệu tham khảo

Callan, 2005, Luminescent sensors and switches in the early 21st century, Tetrahedron, 61, 8551, 10.1016/j.tet.2005.05.043 Van de Linde, 2014, How to switch a fluorophore: from undesired blinking to controlled photoswitching, Chem. Soc. Rev., 43, 1076, 10.1039/C3CS60195A Sedgwick, 2018, Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents, Chem. Soc. Rev., 47, 8842, 10.1039/C8CS00185E Cao, 2019, Coumarin-based small-molecule fluorescent chemosensors, Chem. Rev., 119, 10403, 10.1021/acs.chemrev.9b00145 Wu, 2020, Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents, Chem. Soc. Rev., 49, 5110, 10.1039/C9CS00318E Liu, 2018, All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes, Nat. Rev. Mater., 3, 18020, 10.1038/natrevmats.2018.20 Zhang, 2017, Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes, Nat. Commun., 8, 987, 10.1038/s41467-017-01137-8 Cao, 2015, A fluorescent bistable [2] rotaxane molecular switch on SiO2 nanoparticles, Chem. Commun., 51, 4973, 10.1039/C4CC09976A Lou, 2015, Redox-responsive fluorescent probes with different design strategies, Acc. Chem. Res., 48, 1358, 10.1021/acs.accounts.5b00009 Langton, 2014, Rotaxane and catenane host structures for sensing charged guest species, Acc. Chem. Res., 47, 1935, 10.1021/ar500012a Nakatani, 2010, Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2] catenane and control of its structure, Angew. Chem. Int. Ed. Engl., 49, 5463, 10.1002/anie.201002382 Yang, 2014, Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev., 43, 4563, 10.1039/C4CS00051J Mei, 2015, Aggregation-induced emission: together we shine, united we soar!, Chem. Rev., 115, 11718, 10.1021/acs.chemrev.5b00263 Qian, 2017, Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission, Nat. Chem., 9, 83, 10.1038/nchem.2612 Shao, 2018, Solution and solid-state emission toggling of a photochromic hydrazone, J. Am. Chem. Soc., 140, 12323, 10.1021/jacs.8b07108 Kwok, 2015, Biosensing by luminogens with aggregation-induced emission characteristics, Chem. Soc. Rev., 44, 4228, 10.1039/C4CS00325J Wang, 2020, Förster resonance energy transfer: an efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications, Matter, 3, 449, 10.1016/j.matt.2020.05.005 Wang, 2020, Color-tunable single-fluorophore supramolecular system with assembly-encoded emission, Nat. Commun., 11, 158, 10.1038/s41467-019-13994-6 Zhang, 2009, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem., 1, 623, 10.1038/nchem.368 Ai, 2019, A platinum(II) molecular hinge with motions visualized by phosphorescence changes, Proc. Natl. Acad. Sci. USA, 116, 13856, 10.1073/pnas.1908034116 Zhang, 2015, Excited-state conformational/electronic responses of saddle-shaped N,N ′-disubstituted-dihydrodibenzo[a,c]phenazines: wide-tuning emission from red to deep blue and white light combination, J. Am. Chem. Soc., 137, 8509, 10.1021/jacs.5b03491 Zhang, 2020, Vibration-induced emission (VIE) of N,N′-disubstituted-dihydribenzo[a,c]phenazines: fundamental understanding and emerging applications, Adv. Funct. Mater., 30, 1902803, 10.1002/adfm.201902803 Zhang, 2018, Tuning the conformation and color of conjugated polyheterocyclic skeletons by installing ortho-methyl groups, Angew. Chem. Int. Ed. Engl., 57, 9880, 10.1002/anie.201806385 Humeniuk, 2018, White-fluorescent dual-emission mechanosensitive membrane probes that function by bending rather than twisting, Angew. Chem. Int. Ed. Engl., 57, 10559, 10.1002/anie.201804662 Chen, 2017, Snapshotting the excited-state planarization of chemically locked N,N′-disubstituted dihydrodibenzo[a,c]phenazines, J. Am. Chem. Soc., 139, 1636, 10.1021/jacs.6b11789 Zhou, 2019, Designed conformation and fluorescence properties of self-assembled phenazine-cored platinum(II) metallacycles, J. Am. Chem. Soc., 141, 5535, 10.1021/jacs.9b01368 Chen, 2019, Molecular cursor caliper: a fluorescent sensor for dicarboxylate dianions, J. Am. Chem. Soc., 141, 14798, 10.1021/jacs.9b07170 Zhang, 2020, The endeavor of vibration-induced emission (VIE) for dynamic emissions, Chem. Sci., 11, 7525, 10.1039/D0SC01591A Sun, 2020, Diversified excited-state relaxation pathways of donor-linker-acceptor dyads controlled by the bent-to-planar motion of donor, Angew. Chem. Int. Ed. Engl., 59, 18611, 10.1002/anie.202005466 Patterson, 2002, A photoactivatable GFP for selective photolabeling of proteins and cells, Science, 297, 1873, 10.1126/science.1074952 Zimmer, 2002, Green fluorescent protein (GFP): applications, structure, and related photophysical behavior, Chem. Rev., 102, 759, 10.1021/cr010142r Bruns, 2016 Stoddart, 2017, Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (Nobel lecture), Angew. Chem. Int. Ed. Engl., 56, 11094, 10.1002/anie.201703216 Sauvage, 2017, From chemical topology to molecular machines (Nobel lecture), Angew. Chem. Int. Ed. Engl., 56, 11080, 10.1002/anie.201702992 Goujon, 2019, [c2]Daisy chain rotaxanes as molecular muscles, CCS Chem, 1, 83 Erbas-Cakmak, 2015, Artificial molecular machines, Chem. Rev., 115, 10081, 10.1021/acs.chemrev.5b00146 Mena-Hernando, 2019, Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule, Chem. Soc. Rev., 48, 5016, 10.1039/C8CS00888D David, 2019, A [2]rotaxane-based circularly polarized luminescence switch, J. Am. Chem. Soc., 141, 18064, 10.1021/jacs.9b07143 Chang, 2017, Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles, Nat. Chem., 9, 128, 10.1038/nchem.2608 Ceroni, 2014, Light to investigate (read) and operate (write) molecular devices and machines, Chem. Soc. Rev., 43, 4068, 10.1039/C3CS60400D Zhang, 2018, Muscle-like artificial molecular actuators for nanoparticles, Chem, 4, 2670, 10.1016/j.chempr.2018.08.030 Rao, 2017, One-pot synthesis of hetero[6]rotaxane bearing three different kinds of macrocycle through a self-sorting process, Chem. Sci., 8, 6777, 10.1039/C7SC03232C Coutrot, 2008, A new pH-switchable dimannosyl [c2]daisy chain molecular machine, Org. Lett., 10, 3741, 10.1021/ol801390h Hibbert, 2016, The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis, Chem. Comm., 52, 12792, 10.1039/C6CC03888C Ashton, 1995, Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules, Angew. Chem. Int. Ed. Engl., 34, 1865, 10.1002/anie.199518651 Spicher, 2020, Robust atomistic modeling of materials, organometallic, and biochemical systems, Angew. Chem. Int. Ed. Engl., 59, 15665, 10.1002/anie.202004239 Coutrot, 2008, A new glycorotaxane molecular machine based on an anilinium and a triazolium station, Chemistry, 14, 4784, 10.1002/chem.200800480 Coutrot, 2015, A focus on triazolium as a multipurpose molecular station for pH-sensitive interlocked crown-ether-based molecular machines, ChemistryOpen, 4, 556, 10.1002/open.201500088 Hänni, 2010, The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis, Chem. Soc. Rev., 39, 1240, 10.1039/B901974J Meng, 2015, Stepwise motion in a multivalent [2](3)catenane, J. Am. Chem. Soc., 137, 9739, 10.1021/jacs.5b05758 Chen, 2005, A highly selective fluorescent chemosensor for H2PO4-based on a calix [4]arene tetraamide derivative, Eur. J. Org. Chem., 2005, 2468, 10.1002/ejoc.200400832 Yang, 2012, Design and assembly of rotaxane-based molecular switches and machines, Small, 8, 504, 10.1002/smll.201101738 Denis, 2018, A fluorescent ditopic rotaxane ion-pair host, Angew. Chem. Int. Ed. Engl., 57, 5315, 10.1002/anie.201713105