Reversible electron heatingvs. Wave-particle interactions in quasi-perpendicular shocks
Tóm tắt
The energy necessary to explain the electron heating in quasiperpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the «reversible» motion of the electrons, thus producing a «cooling» of the electrons.
Tài liệu tham khảo
citation_journal_title=J. Geophys. Res.; citation_author=W. C. Feldman, R. C. Anderson, S. J. Bame, S. P. Gary, J. T. Gosling, D. McComas, M. F. Thomsen, G. Pashman, M. M. Hoppe; citation_volume=88; citation_publication_date=1983; citation_pages=96-96; citation_id=CR1
citation_journal_title=J. Geophys. Res.; citation_author=M. F. Thomsen, J. T. Gosling, S. J. Bame, M. M. Mellott; citation_volume=90; citation_publication_date=1985; citation_pages=137-137; citation_id=CR2
citation_journal_title=J. Geophys. Res.; citation_author=J. D. Scudder, A. M. Mangeney, C. Lacombe, C. C. Harvey, T. L. Aggson, R. R. Anderson, J. T. Gosling, G. Paschmann, C. T. Russell; citation_volume=91; citation_publication_date=1986; citation_pages=11019-11019; citation_id=CR3
citation_journal_title=J. Geophys. Res.; citation_author=J. D. Scudder, A. M. Mangeney, C. Lacombe, C. C. Harvey, T. L. Aggson, C. T. Russell; citation_volume=91; citation_publication_date=1986; citation_pages=11053-11053; citation_id=CR4
citation_journal_title=J. Geophys. Res.; citation_author=J. D. Scudder, A. M. Mangeney, C. Lacombe, C. C. Harvey, C. S. Wu, R. C. Anderson; citation_volume=91; citation_publication_date=1986; citation_pages=11075-11075; citation_id=CR5
citation_journal_title=J. Geophys. Res.; citation_author=M. D. Montgomery, J. R. Asbridge, S. J. Bame; citation_volume=75; citation_publication_date=1970; citation_pages=1217-1217; citation_id=CR6
citation_journal_title=J. Geophys. Res; citation_author=D. Winske, M. Tanaka, C. S. Wu, K. B. Quest; citation_volume=90; citation_publication_date=1985; citation_pages=123-123; citation_id=CR7
citation_journal_title=J. Geophys. Res.; citation_author=C. C. Goodrich, J. D. Scudder; citation_volume=89; citation_publication_date=1984; citation_pages=6654-6654; citation_id=CR8
citation_journal_title=Phys. Rev.; citation_author=F. Hoffmann, E. Teller; citation_volume=80; citation_publication_date=1950; citation_pages=692-692; citation_doi=10.1103/PhysRev.80.692; citation_id=CR9
citation_title=Shock Waves in Collionless Plasma; citation_publication_date=1971; citation_id=CR10; citation_author=D. A. Tidman; citation_author=N. A. Krall; citation_publisher=Wiley Interscience
citation_journal_title=Plasma Phys.; citation_author=R. D. Hazeltine; citation_volume=15; citation_publication_date=1973; citation_pages=77-77; citation_doi=10.1088/0032-1028/15/1/009; citation_id=CR11
citation_journal_title=J. Geophys. Res.; citation_author=P. Veltri, A. Mangeney, J. D. Scudder; citation_volume=95; citation_publication_date=1990; citation_pages=14939-14939; citation_id=CR12
citation_journal_title=Ann. Geophys.; citation_author=M. M. Leroy, A. Mangeney; citation_volume=2; citation_publication_date=1984; citation_pages=449-449; citation_id=CR13
citation_journal_title=J. Geophys. Res.; citation_author=C. S. Wu; citation_volume=89; citation_publication_date=1984; citation_pages=8857-8857; citation_doi=10.1029/JA089iA10p08857; citation_id=CR14