Trapnell, C. et al. Nat. Biotechnol. 32, 381–386 (2014).
Kumar, P., Tan, Y. & Cahan, P. Development 144, 17–32 (2017).
Setty, M. et al. Nat. Biotechnol. 34, 637–645 (2016).
Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F. & Theis, F.J. Nat. Methods 13, 845–848 (2016).
Mao, Q., Wang, L., Goodison, S. & Sun, Y. in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 765–774 (ACM, 2015).
Mao, Q., Wang, L., Tsang, I. & Sun, Y. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/TPAMI.2016.2635657 (2016).
Rodriguez, A. & Laio, A. Science 344, 1492–1496 (2014).
Treutlein, B. et al. Nature 509, 371–375 (2014).
Olsson, A. et al. Nature 537, 698–702 (2016).
Paul, F. et al. Cell 163, 1663–1677 (2015).
Hastie, T. & Stuetzle, W. J. Am. Stat. Assoc. 84, 502–516 (1989).
Gorban, A.N. & Zinovyev, A.Y. in Handbook of Research on Machine-learning Applications and Trends: Algorithms, Methods, and Techniques 28–59 (Information Science Reference, Hershey, Pennsylvania, USA, 2009).
Bellman, R. The Theory of Dynamic Programming (DTIC Document, 1954).
Welch, J.D., Hartemink, A.J. & Prins, J.F. Genome Biol. 17, 106 (2016).
Qiu, X. et al. Nat. Methods 14, 309–314 (2017).
Qiu, X., Ding, S. & Shi, T. PLoS One 7, e49271 (2012).
Tang, Y., Yuan, R., Wang, G., Zhu, X. & Ao, P. arXiv:1611.07140 (2016).
Tirosh, I. et al. Nature 539, 309–313 (2016).
Cusanovich, D.A. et al. Science 348, 910–914 (2015).
Ramani, V. et al. Nat. Methods 14, 263–266 (2017).
Mao, Q., Yang, L., Wang, L., Goodison, S. & Sun, Y. . in Proceedings of the 2015 SIAM International Conference on Data Mining 792–800 (Society for Industrial and Applied Mathematics, 2015).
Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge University Press, Cambridge, 2004).
Rand, W.M. J. Am. Stat. Assoc. 66, 846–850 (1971).