Reversed Hofmeister series—The rule rather than the exception

Current Opinion in Colloid & Interface Science - Tập 23 - Trang 10-18 - 2016
Nadine Schwierz1, Dominik Horinek2, Uri Sivan3, Roland R. Netz4
1Chemistry Department, University of California, Berkeley, CA 94720, USA
2Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
3Department of Physics , Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology,Haifa 32000, Israel
4Fachbereich für Physik, Freie Universität Berlin, 14195 Berlin, Germany

Tài liệu tham khảo

Traube, 1910, The attraction pressure, J Phys Chem, 14, 452, 10.1021/j150113a003 Collins, 2004, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods, 34, 300, 10.1016/j.ymeth.2004.03.021 Kunz, 2004, The present state of affairs with Hofmeister effects, Curr Opin Colloid Interface Sci, 9, 1, 10.1016/j.cocis.2004.05.004 Henry, 2007, Ion-specific coalescence of bubbles in mixed electrolyte solutions, J Phys Chem C, 111, 1015, 10.1021/jp066400b Garcia-Celma, 2007, Specific anion and cation binding to lipid membranes investigated on a solid supported membrane, Langmuir, 23, 10074, 10.1021/la701188f Petrache, 2006, Salt screening and specific ion adsorption determine neutral-lipid membrane interactions, Proc Natl Acad Sci U S A, 103, 7982, 10.1073/pnas.0509967103 Zhang, 2006, Interactions between macromolecules and ions: the Hofmeister series, Curr Opin Chem Biol, 10, 658, 10.1016/j.cbpa.2006.09.020 Kunz, 2004, Osmotic coefficients and surface tensions of aqueous electrolyte solutions: role of dispersion forces, J Phys Chem B, 108, 2398, 10.1021/jp036113x Vlachy, 2008, Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition, J Colloid Interface Sci, 319, 542, 10.1016/j.jcis.2007.11.048 Hofmeister, 1888, Zur Lehre von der Wirkung der Salze, Arch Exp Pathol Pharmakol, 24, 247, 10.1007/BF01918191 Omta, 2003, Negligible effect of ions on the hydrogen-bond structure in liquid water, Science, 301, 347, 10.1126/science.1084801 Batchelor, 2004, Impact of protein denaturants and stabilizers on water structure, J Am Chem Soc, 126, 1958, 10.1021/ja039335h Gurau, 2004, On the mechanism of the Hofmeister effect, J Am Chem Soc, 126, 10522, 10.1021/ja047715c Kunz, 2010, Specific ion effects in colloidal and biological systems, Curr Opin Colloid Interface Sci, 15, 34, 10.1016/j.cocis.2009.11.008 Pegram, 2008, Thermodynamic origin of Hofmeister ion effects, J Phys Chem B, 112, 9428, 10.1021/jp800816a Zhang, 2010, Chemistry of Hofmeister anions and osmolytes, Annu Rev Phys Chem, 61, 63, 10.1146/annurev.physchem.59.032607.093635 Boström, 2005, Why forces between proteins follow different Hofmeister series for pH above and below pI, Biophys Chem, 117, 217, 10.1016/j.bpc.2005.05.010 Kim, 2001, Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy, Eur Phys J E, 4, 411, 10.1007/s101890170096 Zhang, 2009, The inverse and direct Hofmeister series for lysozyme, Proc Natl Acad Sci U S A, 36, 15249, 10.1073/pnas.0907616106 Dishon, 2009, From repulsion to attraction and back to repulsion: the effect of NaCl, KCl, and CsCl on the force between silica surfaces in aqueous solution, Langmuir, 25, 2831, 10.1021/la803022b Flores, 2012, Direct and reverse Hofmeister effects on interfacial water structure, J Phys Chem C, 116, 14408, 10.1021/jp3029352 Flores, 2012, The effects of Hofmeister cations at negatively charged hydrophilic surfaces, J Phys Chem C, 116, 5730, 10.1021/jp210791j Morag, 2013, The governing role of surface hydration in ion specific adsorption to silica: an AFM-based account of the Hofmeister Universality and its reversal, Langmuir, 29, 6317, 10.1021/la400507n Ries-Kautt, 1989, Relative effectiveness of various ions on the solubility and crystal growth of lysozyme, J Biol Chem, 264, 745, 10.1016/S0021-9258(19)85005-6 Carbonnaux, 1995, Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2, Protein Sci, 4, 2123, 10.1002/pro.5560041018 Finet, 2004, The Hofmeister effect as seen by SAXS in protein solutions, Curr Opin Colloid Interface Sci, 9, 112, 10.1016/j.cocis.2004.05.014 López-León, 2008, Hofmeister effects in colloidal systems: influence of the surface nature, J Phys Chem C, 112, 16060, 10.1021/jp803796a López-León, 2003, Hofmeister effects in the stability and electrophoretic mobility of polystyrene latex particles, J Phys Chem B, 107, 5696, 10.1021/jp0216981 López-León, 2005, Hofmeister effects on the colloidal stability of an IgG-coated polystyrene latex, J Colloid Interface Sci, 284, 139, 10.1016/j.jcis.2004.10.021 Lyklema, 2009, Simple Hofmeister series, Chem Phys Lett, 467, 217, 10.1016/j.cplett.2008.11.013 Lyklema, 2003, Lyotropic sequences in colloid stability revisited, Adv Colloid Interface Sci, 100–102, 1, 10.1016/S0001-8686(02)00075-1 Dumont, 1990, Influence of the point of zero charge of titanium-dioxide hydrosols on the ionic adsorption sequences, J Colloid Interface Sci, 138, 543, 10.1016/0021-9797(90)90236-H Schwierz, 2015, Specific ion binding to carboxylic surface groups and the pH dependence of the Hofmeister series, Langmuir, 31, 215, 10.1021/la503813d Kunz, 2007 Melander, 1977, Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series, Arch Biochem Biophys, 183, 200, 10.1016/0003-9861(77)90434-9 Pegram, 2008, Quantifying accumulation or exclusion of H+, HO−, and Hofmeister salt ions near interfaces, Chem Phys Lett, 467, 1, 10.1016/j.cplett.2008.10.090 Baldwin, 1996, How Hofmeister ion interactions affect protein stability, Biophys J, 71, 2056, 10.1016/S0006-3495(96)79404-3 Jungwirth, 2001, Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry, J Phys Chem B, 105, 10468, 10.1021/jp012750g Jungwirth, 2002, Ions at the air/water interface, J Phys Chem B, 106, 6361, 10.1021/jp020242g Huang, 2008, Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip, Langmuir, 24, 1442, 10.1021/la7021787 Horinek, 2009, Specific ion adsorption at the air/water interface: the role of hydrophobic solvation, Chem Phys Lett, 479, 173, 10.1016/j.cplett.2009.07.077 Levin, 2009, Ions at the air–water interface: an end to a hundred-year-old mystery?, Phys Rev Lett, 103, 257802, 10.1103/PhysRevLett.103.257802 Schwierz, 2013, Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces, Langmuir, 29, 2602, 10.1021/la303924e Horinek, 2007, Specific ion adsorption at hydrophobic solid surfaces, Phys Rev Lett, 99, 226104, 10.1103/PhysRevLett.99.226104 Schwierz, 2012, Effective interaction between two ion-adsorbing plates: Hofmeister series and salting-in/salting-out phase diagrams from a global mean-field analysis, Langmuir, 28, 3881, 10.1021/la204060k Schwierz, 2010, Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity, Langmuir, 26, 7370, 10.1021/la904397v Jungwirth, 2006, Specific ion effects at the air/water interface, J Chem Rev, 106, 1259, 10.1021/cr0403741 Luo, 2006, Ion distributions near a liquid–liquid interface, Science, 311, 216, 10.1126/science.1120392 Scott, 1999, The gromos biomolecular simulation program package, J Phys Chem A, 103, 3596, 10.1021/jp984217f Horinek, 2009, Rational design of ion force fields based on thermodynamic solvation properties, J Chem Phys, 130, 124507, 10.1063/1.3081142 Fyta, 2010, Ionic force field optimization based on single-ion and ion-pair solvation properties, J. Chem. Phys, 132, 10.1063/1.3292575 Van Der Spoel, 2005, Gromacs: fast, flexible, and free, J Comput Chem, 26, 1701, 10.1002/jcc.20291 Essmann, 1995, A smooth particle mesh ewald method, J Chem Phys, 103, 8577, 10.1063/1.470117 Torrie, 1977, Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling, J Comput Phys, 23, 187, 10.1016/0021-9991(77)90121-8 Kumar, 1995, Multidimensional free-energy calculations using the weighted histogram analysis method, J Comput Chem, 16, 1339, 10.1002/jcc.540161104 Haertl, 2007, The ion sensitivity of surface conductive single crystalline diamond, J Am Chem Soc, 129, 1287, 10.1021/ja066543b Heyda, 2009, Ion specific effects of sodium and potassium on the catalytic activity of HIV-1 protease, Phys Chem Chem Phys, 11, 7599, 10.1039/b905462f Bikerman, 1942, Structure and capacity of electrical double layer, Philos Mag, 33, 384, 10.1080/14786444208520813 Borukhov, 2000, Adsorption of large ions from an electrolyte solution: a modified Poisson–boltzmann equation, Electrochim Acta, 46, 221, 10.1016/S0013-4686(00)00576-4 Evans, 1999 Salis, 2006, Specific anion effects on glass electrode pH measurements of buffer solutions: bulk and surface phenomena, J Phys Chem B, 110, 2949, 10.1021/jp0546296 von Hippel, 1964, Neutral salts: the generality of their effects on the stability of macromolecular conformations, Science, 145, 577, 10.1126/science.145.3632.577 Lund, 2008, Ion specific protein assembly and hydrophobic surface forces, Phys Rev Lett, 100, 258105, 10.1103/PhysRevLett.100.258105 Jungwirth, 2009, Spiers memorial lecture: ions at aqueous interfaces, Faraday Discuss, 141, 9, 10.1039/B816684F Collins, 1997, Charge density-dependent strength of hydration and biological structure, Biophys J, 72, 65, 10.1016/S0006-3495(97)78647-8 Bonthuis, 2012, Profile of the static permittivity tensor of water at interfaces: consequences for capacitance, hydration interaction and ion adsorption, Langmuir, 28, 7679, 10.1021/la2051564 Rinne, 2014, Ion-specific solvation water dynamics: single water versus collective water effects, J Phys Chem A, 118, 11667, 10.1021/jp5066874 Lima, 2011, Attractive double-layer forces between neutral hydrophobic and neutral hydrophilic surfaces, Phys. Rev, E 84 Robertson, 1911, Contributions to the theory of the mode of action of inorganic salts upon proteins in solution, J Biol Chem, 9, 303, 10.1016/S0021-9258(18)91467-5 Green, 1932, Studies in the physical chemistry of the proteins X. the solubility of hemoglobin in solutions of chlorides and sulfates of varying concentration, J Biol Chem, 95, 47, 10.1016/S0021-9258(18)76355-2 Poillon, 1979, Deoxygenated sickle hemoglobin—effects of lyotropic salt on its solubility, J Biol Chem, 254, 3462, 10.1016/S0021-9258(18)50782-1 Nandi, 1972, Effects of salts on free-energies of nonpolar groups in model peptides, J Am Chem Soc, 94, 1308, 10.1021/ja00759a043 Vlachy, 2009, Hofmeister series and specific interactions of charged headgroups with aqueous ions, Adv Colloid Interface Sci, 146, 42, 10.1016/j.cis.2008.09.010 Mamatkulov, 2013, Force fields for divalent cations based on single-ion and ion-pair properties, J. Chem. Phys, 138, 10.1063/1.4772808