Reverse recovery transient characteristic of PEDOT:PSS/n-Si hybrid organic-inorganic heterojunction

Organic Electronics - Tập 42 - Trang 269-274 - 2017
Ari Bimo Prakoso1,2, Lin Ke3, Jianxiong Wang1, Zeyu Li1,2, Changyun Jiang3, Rusli1,2
1Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
2CINTRA UMI CNRS, NTU, THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
3Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 13863, Singapore

Tài liệu tham khảo

He, 2011, Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells, IEEE Electron Device Lett., 32, 1406, 10.1109/LED.2011.2162222 Zielke, 2014, Organic-silicon heterojunction solar cells on n-type silicon wafers: the BackPEDOT concept, Sol. Energy Mater. Sol. Cells, 131, 110, 10.1016/j.solmat.2014.05.022 Jäckle, 2015, Junction formation and current transport mechanisms in hybrid n-Si/PEDOT: PSS solar cells, Sci. Rep., 5, 13008, 10.1038/srep13008 Shen, 2013, Hole electrical transporting properties in organic-Si Schottky solar cell, Appl. Phys. Lett., 103, 013504, 10.1063/1.4812988 Zhu, 2013, Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential, Appl. Phys. Lett., 102, 113504, 10.1063/1.4796112 Nagamatsu, 2014, A 12% efficient silicon/PEDOT: PSS heterojunction solar cell fabricated at < 100 ◦C, IEEE J. Photovoltaics, 4, 260, 10.1109/JPHOTOV.2013.2287758 Thomas, 2014, Defect-minimized PEDOT: PSS/Planar-Si solar cell with very high efficiency, Adv. Funct. Matter, 24, 4978, 10.1002/adfm.201400380 Liu, 2014, 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer, Adv. Mater, 26, 6007, 10.1002/adma.201402076 Liang, 2016, Interface engineering to boost photoresponse performance of self-powered, broad-bandwidth PEDOT: PSS/Si heterojunction photodetector, ACS Appl. Mater Interfaces, 8, 19158, 10.1021/acsami.6b06301 J. Jhaveri, S. Avasthi, K. A. Nagamatsu, and J. C. Sturm, "Wide Bandgap HBT on Crystalline Silicon using Electron-Blocking PEDOT: PSS Emitter," presented at the Device Research Conference (DRC), 2013 71st Annual, Notre Dame, IN, 2013. Erickson, 2014, n-Si-Organic inversion layer interfaces: a low temperature deposition method for forming a p-n homojunction in n-Si, Adv. Energy Mater., 4, 1301724, 10.1002/aenm.201301724 Wang, 1990, 24% efficient silicon solar cells, Appl. Phys. Lett., 57, 602, 10.1063/1.103610 Saga, 2010, "Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater., 2, 96, 10.1038/asiamat.2010.82 Sharma, 2014, Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS, ACS Appl. Mater Interfaces, 6, 4356, 10.1021/am500063w Walter, 2013, Electrical junction behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) contacts to H-Terminated and CH3-terminated p-, n-, and n+-Si(111) surfaces, J. Phys. Chem. C, 117, 14485, 10.1021/jp4018162 Zhang, 2013, Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell, ACS Appl. Mater Interfaces, 5, 4678, 10.1021/am302893r He, 2014, Towards stable silicon nanoarray hybrid solar cells, Sci. Rep., 4, 3715, 10.1038/srep03715 Price, 2010, Comparison of majority carrier charge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions, Appl. Phys. Lett., 97, 083503, 10.1063/1.3480599 Cho, 2005, Reflectance study on the metal-insulator transition driven by crystallinity change in poly(3,4-ethylenedioxythiophene)/poly(stylenesulfonate) films, J. Korean Phys. Soc., 47, 474 Ouyang, 2013, “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices, Displays, 34, 423, 10.1016/j.displa.2013.08.007 Kim, 2002, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met., 126, 311, 10.1016/S0379-6779(01)00576-8 Bubnova, 2014, Semi-metallic polymers, Nat. Mater, 13, 190, 10.1038/nmat3824 Pierret, 1996 Lin, 2009, Capacitance–voltage and current–voltage characteristics of Au Schottky contact on n-type Si with a conducting polymer, J. Phys. D Appl. Phys., 42, 165104, 10.1088/0022-3727/42/16/165104 He, 2012, High efficiency planar Si/Organic heterojunction hybrid solar cells, Appl. Phys. Lett., 100, 073503, 10.1063/1.3684872 Elschner, 2011 Maeng, 2008, Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) and ZnO nanowall, Appl. Phys. Lett., 93, 123109, 10.1063/1.2990225 Meier, 1988, The effect of doping density and injection level on minority-carrier lifetime as applied to bifacial dendritic web silicon solar cells, IEEE Trans. Electron Devices, ED-35, 70, 10.1109/16.2417 Fabre, 1975, Trap saturation in silicon solar cells, Appl. Phys. Lett., 27, 239, 10.1063/1.88407 Mathur, 1981, Dependence of minority carrier diffusion length on illumination level and temperature in single crystal and polycrystalline Si solar cells, J. Appl. Phys., 52, 6949, 10.1063/1.328650 Ho, 1977, Enhancement of diffusion length in EFG ribbon solar cells under illumination, Appl. Phys. Lett., 31, 463, 10.1063/1.89742 Arora, 1982, Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Trans. Electron Devices, 29, 292, 10.1109/T-ED.1982.20698 Suckow, 2014, Fast and reliable calculation of the two-diode model without simplifications, Prog. Photovolt. Res. Appl., 22, 494, 10.1002/pip.2301 Wolf, 1977, Investigation of the double exponential in the current—voltage characteristics of silicon solar cells, IEEE Trans. Electron Devices, 24, 419, 10.1109/T-ED.1977.18750 Chang, 1999, Reflectance of conducting poly(3,4-ethylenedioxythiophene), Synth. Met., 105, 203, 10.1016/S0379-6779(99)00095-8 Stöcker, 2012, Why does the electrical conductivity in PEDOT: PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy, J. Polym. Sci. Part B Polym. Phys., 50, 976, 10.1002/polb.23089 Sailor, 1990, Electronic properties of junctions between silicon and organic conducting polymers, Nature, 346, 155, 10.1038/346155a0 Zeyada, 2015, Electrical conduction mechanisms and dielectric constants of nanostructured methyl violet 2B thin film, Appl. Phys. A, 119, 1109, 10.1007/s00339-015-9076-5 Zeyada, 2016, Fabrication, electrical transport mechanisms and photovoltaic properties of methyl violet 2B/n-Si hybrid organic/inorganic solar cell, Microelectron. Eng., 163, 134, 10.1016/j.mee.2016.06.019 Brus, 2013, Electrical and photoelectrical properties of P3HT/n-Si hybrid organic–inorganic heterojunction solar cells, Org. Electron., 14, 3109, 10.1016/j.orgel.2013.07.021