Reverse recovery transient characteristic of PEDOT:PSS/n-Si hybrid organic-inorganic heterojunction
Tài liệu tham khảo
He, 2011, Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells, IEEE Electron Device Lett., 32, 1406, 10.1109/LED.2011.2162222
Zielke, 2014, Organic-silicon heterojunction solar cells on n-type silicon wafers: the BackPEDOT concept, Sol. Energy Mater. Sol. Cells, 131, 110, 10.1016/j.solmat.2014.05.022
Jäckle, 2015, Junction formation and current transport mechanisms in hybrid n-Si/PEDOT: PSS solar cells, Sci. Rep., 5, 13008, 10.1038/srep13008
Shen, 2013, Hole electrical transporting properties in organic-Si Schottky solar cell, Appl. Phys. Lett., 103, 013504, 10.1063/1.4812988
Zhu, 2013, Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential, Appl. Phys. Lett., 102, 113504, 10.1063/1.4796112
Nagamatsu, 2014, A 12% efficient silicon/PEDOT: PSS heterojunction solar cell fabricated at < 100 ◦C, IEEE J. Photovoltaics, 4, 260, 10.1109/JPHOTOV.2013.2287758
Thomas, 2014, Defect-minimized PEDOT: PSS/Planar-Si solar cell with very high efficiency, Adv. Funct. Matter, 24, 4978, 10.1002/adfm.201400380
Liu, 2014, 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer, Adv. Mater, 26, 6007, 10.1002/adma.201402076
Liang, 2016, Interface engineering to boost photoresponse performance of self-powered, broad-bandwidth PEDOT: PSS/Si heterojunction photodetector, ACS Appl. Mater Interfaces, 8, 19158, 10.1021/acsami.6b06301
J. Jhaveri, S. Avasthi, K. A. Nagamatsu, and J. C. Sturm, "Wide Bandgap HBT on Crystalline Silicon using Electron-Blocking PEDOT: PSS Emitter," presented at the Device Research Conference (DRC), 2013 71st Annual, Notre Dame, IN, 2013.
Erickson, 2014, n-Si-Organic inversion layer interfaces: a low temperature deposition method for forming a p-n homojunction in n-Si, Adv. Energy Mater., 4, 1301724, 10.1002/aenm.201301724
Wang, 1990, 24% efficient silicon solar cells, Appl. Phys. Lett., 57, 602, 10.1063/1.103610
Saga, 2010, "Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater., 2, 96, 10.1038/asiamat.2010.82
Sharma, 2014, Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS, ACS Appl. Mater Interfaces, 6, 4356, 10.1021/am500063w
Walter, 2013, Electrical junction behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) contacts to H-Terminated and CH3-terminated p-, n-, and n+-Si(111) surfaces, J. Phys. Chem. C, 117, 14485, 10.1021/jp4018162
Zhang, 2013, Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell, ACS Appl. Mater Interfaces, 5, 4678, 10.1021/am302893r
He, 2014, Towards stable silicon nanoarray hybrid solar cells, Sci. Rep., 4, 3715, 10.1038/srep03715
Price, 2010, Comparison of majority carrier charge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions, Appl. Phys. Lett., 97, 083503, 10.1063/1.3480599
Cho, 2005, Reflectance study on the metal-insulator transition driven by crystallinity change in poly(3,4-ethylenedioxythiophene)/poly(stylenesulfonate) films, J. Korean Phys. Soc., 47, 474
Ouyang, 2013, “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices, Displays, 34, 423, 10.1016/j.displa.2013.08.007
Kim, 2002, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met., 126, 311, 10.1016/S0379-6779(01)00576-8
Bubnova, 2014, Semi-metallic polymers, Nat. Mater, 13, 190, 10.1038/nmat3824
Pierret, 1996
Lin, 2009, Capacitance–voltage and current–voltage characteristics of Au Schottky contact on n-type Si with a conducting polymer, J. Phys. D Appl. Phys., 42, 165104, 10.1088/0022-3727/42/16/165104
He, 2012, High efficiency planar Si/Organic heterojunction hybrid solar cells, Appl. Phys. Lett., 100, 073503, 10.1063/1.3684872
Elschner, 2011
Maeng, 2008, Transient reverse current phenomenon in a p-n heterojunction comprised of poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) and ZnO nanowall, Appl. Phys. Lett., 93, 123109, 10.1063/1.2990225
Meier, 1988, The effect of doping density and injection level on minority-carrier lifetime as applied to bifacial dendritic web silicon solar cells, IEEE Trans. Electron Devices, ED-35, 70, 10.1109/16.2417
Fabre, 1975, Trap saturation in silicon solar cells, Appl. Phys. Lett., 27, 239, 10.1063/1.88407
Mathur, 1981, Dependence of minority carrier diffusion length on illumination level and temperature in single crystal and polycrystalline Si solar cells, J. Appl. Phys., 52, 6949, 10.1063/1.328650
Ho, 1977, Enhancement of diffusion length in EFG ribbon solar cells under illumination, Appl. Phys. Lett., 31, 463, 10.1063/1.89742
Arora, 1982, Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Trans. Electron Devices, 29, 292, 10.1109/T-ED.1982.20698
Suckow, 2014, Fast and reliable calculation of the two-diode model without simplifications, Prog. Photovolt. Res. Appl., 22, 494, 10.1002/pip.2301
Wolf, 1977, Investigation of the double exponential in the current—voltage characteristics of silicon solar cells, IEEE Trans. Electron Devices, 24, 419, 10.1109/T-ED.1977.18750
Chang, 1999, Reflectance of conducting poly(3,4-ethylenedioxythiophene), Synth. Met., 105, 203, 10.1016/S0379-6779(99)00095-8
Stöcker, 2012, Why does the electrical conductivity in PEDOT: PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy, J. Polym. Sci. Part B Polym. Phys., 50, 976, 10.1002/polb.23089
Sailor, 1990, Electronic properties of junctions between silicon and organic conducting polymers, Nature, 346, 155, 10.1038/346155a0
Zeyada, 2015, Electrical conduction mechanisms and dielectric constants of nanostructured methyl violet 2B thin film, Appl. Phys. A, 119, 1109, 10.1007/s00339-015-9076-5
Zeyada, 2016, Fabrication, electrical transport mechanisms and photovoltaic properties of methyl violet 2B/n-Si hybrid organic/inorganic solar cell, Microelectron. Eng., 163, 134, 10.1016/j.mee.2016.06.019
Brus, 2013, Electrical and photoelectrical properties of P3HT/n-Si hybrid organic–inorganic heterojunction solar cells, Org. Electron., 14, 3109, 10.1016/j.orgel.2013.07.021