Revealing the quantum regime in tunnelling plasmonics

Nature - Tập 491 Số 7425 - Trang 574-577 - 2012
K. Savage1, Matthew M. Hawkeye1, Rubén Esteban2, A. G. Borisov3,2, Javier Aizpurua2, Jeremy J. Baumberg1
1Nanophotonics Centre Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK
2Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain ,
3Institut des Sciences Moléculaires d’Orsay – UMR 8214, CNRS-Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France ,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)

Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005)

Cubukcu, E., Kort, E. A., Crozier, K. B. & Capasso, F. Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006)

Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010)

Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

Romero, I., Aizpurua, J., Bryant, G. W. & de Abajo, F. J. G. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express. 14, 9988–9999 (2006)

Aubry, A., Lei, D. Y., Maier, S. A. & Pendry, J. B. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys. Rev. Lett. 105, 233901 (2010)

Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

Atay, T., Song, J.-H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004)

Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007)

Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007)

Lassiter, J. B. et al. Close encounters between two nanoshells. Nano Lett. 8, 1212–1218 (2008)

Taylor, R. W. et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril glue. ACS Nano 5, 3878–3887 (2011)

Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics. Nature Commun. 3, 825 (2012)

Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011)

Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012)

Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012)

Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009)

Song, P., Nordlander, P. & Gao, S. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J. Chem. Phys. 134, 074701 (2011)

Kern, J. et al. Atomic-scale confinement of resonant optical fields. Nano Lett. http://dx.doi.org/10.1021/nl302315g (published online, 17 September 2012)

Duan, H., Fernández-Domínguez, A. I., Bosman, M., Maier, S. A. & Yang, J. K. W. Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012)

Bragas, A. V., Landi, S. M. & Martínez, O. E. Laser field enhancement at the scanning tunneling microscope junction measured by optical rectification. Appl. Phys. Lett. 72, 2075–2077 (1998)

Schneider, N. L., Schull, G. & Berndt, R. Optical probe of quantum shot-noise reduction at a single-atom contact. Phys. Rev. Lett. 105, 026601 (2010)

Chen, C., Bobisch, C. A. & Ho, W. Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains. Science 325, 981–985 (2009)

Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nature Nanotechnol. 5, 732–736 (2010)

Johansson, P. Light emission from a scanning tunneling microscope: fully retarded calculation. Phys. Rev. B 58, 10823–10834 (1998)

Savage, K. J., Hawkeye, M. M., Soares, B. F. & Baumberg, J. J. From microns to kissing contact: dynamic positioning of two nano-systems. Appl. Phys. Lett. 99, 053110 (2011)

Cappella, B. & Dietler, G. Force distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)

Ittah, N. & Selzer, Y. Electrical detection of surface plasmon polaritons by 1G0 gold quantum point contacts. Nano Lett. 11, 529–534 (2011)