Vining, 2001, Nature, 413, 577, 10.1038/35098159
He, 2017, Science, 357, 10.1126/science.aak9997
Bell, 2008, Science, 321, 1457, 10.1126/science.1158899
Snyder, 2008, Nat. Mater., 7, 105, 10.1038/nmat2090
Gingerich, 2015, Environ. Sci. Technol., 49, 8297, 10.1021/es5060989
Tan, 2016, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255
Zhu, 2017, Adv. Mater., 29, 10.1002/adma.201605884
Seebeck, 1826, Annalen der Physik, 82, 253, 10.1002/andp.18260820302
Ioffe, 1959, Phys. Today, 12, 42, 10.1063/1.3060810
Poudel, 2008, Science, 320, 634, 10.1126/science.1156446
Heremans, 2008, Science, 321, 554, 10.1126/science.1159725
Pei, 2011, Nature, 473, 66, 10.1038/nature09996
Zhao, 2014, Nature, 508, 373, 10.1038/nature13184
Hong, 2019, Adv. Mater., 31, 10.1002/adma.201807071
Li, 2017, ACS Energy Lett., 2, 2349, 10.1021/acsenergylett.7b00658
Liu, 2012, Nat. Mater., 11, 422, 10.1038/nmat3273
Zhou, 2017, J. Mater. Chem. A, 5, 2876, 10.1039/C6TA09189J
Tamaki, 2016, Adv. Mater., 28, 10182, 10.1002/adma.201603955
Snyder, 2004, Nat. Mater., 3, 458, 10.1038/nmat1154
Sales, 1996, Science, 272, 1325, 10.1126/science.272.5266.1325
Nolas, 1998, Appl. Phys. Lett., 73, 178, 10.1063/1.121747
Zebarjadi, 2011, Nano Lett., 11, 2225, 10.1021/nl201206d
Zhu, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201500588
Minnich, 2009, Energy Environ. Sci., 2, 466, 10.1039/b822664b
Zhao, 2013, J. Am. Chem. Soc., 135, 7364, 10.1021/ja403134b
Biswas, 2012, Nature, 489, 414, 10.1038/nature11439
Zhang, 2018, J. Am. Chem. Soc., 140, 15883, 10.1021/jacs.8b09375
Hsu, 2004, Science, 303, 818, 10.1126/science.1092963
Hong, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201702333
Nunna, 2017, Energy Environ. Sci., 10, 1928, 10.1039/C7EE01737E
Vining, 2009, Nat. Mater., 8, 83, 10.1038/nmat2361
Zevalkink, 2018, Appl. Phys. Rev., 5, 10.1063/1.5021094
Wang, 2013, Adv. Funct. Mater., 23, 1586, 10.1002/adfm.201201576
Nielsen, 2013, Energy Environ. Sci., 6, 570, 10.1039/C2EE23391F
Chang, 2018, Mater. Today Phys., 4, 50, 10.1016/j.mtphys.2018.02.005
Shportko, 2008, Nat. Mater., 7, 653, 10.1038/nmat2226
Lee, 2014, Nat. Commun., 5, 3525, 10.1038/ncomms4525
Raty, 2019, Adv. Mater., 31, 10.1002/adma.201806280
Wuttig, 2018, Adv. Mater., 30, 10.1002/adma.201803777
Yu, 2019, Adv. Funct. Mater.
Liu, 2013, Adv. Mater., 25, 6607, 10.1002/adma.201302660
Chen, 2018, Adv. Mater., 30, 10.1002/adma.201705617
Toberer, 2011, J. Mater. Chem., 21, 15843, 10.1039/c1jm11754h
Li, 2018, Adv. Energy Mater., 8
You, 2018, Energy Environ. Sci., 11, 1848, 10.1039/C8EE00418H
Zhao, 2013, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b
Pei, 2017, Adv. Energy Mater., 7, 10.1002/aenm.201601450
Hu, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201500411
Chen, 2017, Adv. Mater., 29
Cha, 2019, ACS Appl. Mater. Interfaces, 11, 21645, 10.1021/acsami.9b08108
Zhu, 2017, J. Mater. Sci., 52, 8526, 10.1007/s10853-017-1063-0
Heinz, 2014, Adv. Funct. Mater., 24, 2135, 10.1002/adfm.201302899
Pei, 2011, Adv. Mater., 23, 5674, 10.1002/adma.201103153
Chen, 2005, Appl. Phys. Lett., 87
Hanus, 2019, Adv. Mater., 31, 10.1002/adma.201900108
Imasato, 2018, APL Mater., 6, 10.1063/1.5011379
Zhao, 2016, Science, 351, 141, 10.1126/science.aad3749
Kim, 2017, Mater. Today, 20, 452, 10.1016/j.mattod.2017.02.007
Pei, 2012, Adv. Mater., 24, 6125, 10.1002/adma.201202919
Wang, 2016, Energy Environ. Sci., 9, 3436, 10.1039/C6EE02674E
Zhang, 2014, Adv. Mater., 26, 3848, 10.1002/adma.201400058
Gibbs, 2017, NPJ Comput. Mater., 3, 8, 10.1038/s41524-017-0013-3
Cagnoni, 2018, Adv. Mater., 30, 1801787, 10.1002/adma.201801787
Chen, 2013, Sci. Rep., 3, 3168, 10.1038/srep03168
Zhang, 2012, Energy Environ. Sci., 5, 5246, 10.1039/C1EE02465E
Wu, 2017, NPG Asia Mater., 9, 10.1038/am.2016.203
Wang, 2017, ACS Energy Lett., 2, 1203, 10.1021/acsenergylett.7b00285
Jaworski, 2009, Phys. Rev. B, 80, 10.1103/PhysRevB.80.233201
Zhang, 2017, Adv. Mater., 29
Kishimoto, 2003, Jpn. J. Appl. Phys., 42, 501, 10.1143/JJAP.42.501
Li, 2013, Adv. Funct. Mater., 23, 4317, 10.1002/adfm.201300146
Madavali, 2017, Intermetallics, 82, 68, 10.1016/j.intermet.2016.11.002
Yu, 2012, Nano Lett., 12, 2077, 10.1021/nl3003045
Pei, 2014, J. Am. Chem. Soc., 136, 13902, 10.1021/ja507945h
Berry, 2017, Chem. Mater., 29, 7042, 10.1021/acs.chemmater.7b02685
Beekman, 2019, Charge Transfer in Thermoelectric Nanocomposites: Power Factor Enhancements and Model Systems, Scrivener Publishing, 1
Kim, 2015, J. Mater. Chem. C, 3, 10336, 10.1039/C5TC01670C
Zhou, 2018, Mater. Today, 21, 974, 10.1016/j.mattod.2018.03.039
Mehdizadeh Dehkordi, 2015, Mater. Sci. Eng., R, 97, 1, 10.1016/j.mser.2015.08.001
Cheng, 2019, Adv. Mater., 31, 10.1002/adma.201904316
Cha, 2019, ACS Appl. Mater. Interfaces, 11, 30999, 10.1021/acsami.9b10394
Zhu, 2016, Adv. Sci., 3, 10.1002/advs.201600004
Xin, 2017, Nano Energy, 34, 428, 10.1016/j.nanoen.2017.03.012
Fu, 2017, Energy Environ. Sci., 10, 2030, 10.1039/C7EE01871A
Zhai, 2017, ACS Appl. Mater. Interfaces, 9, 28577, 10.1021/acsami.7b08537
Wu, 2017, Nano Energy, 35, 321, 10.1016/j.nanoen.2017.04.004
Steele, 1958, J. Appl. Phys., 29, 1517, 10.1063/1.1722984
Li, 2017, Adv. Mater., 29
Hwang, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201800065
Chen, 2017, Nat. Commun., 8, 13828, 10.1038/ncomms13828
Kim, 2015, Science, 348, 109, 10.1126/science.aaa4166
Mun, 2018, Acta Mater., 159, 266, 10.1016/j.actamat.2018.08.027
Zhao, 2017, Adv. Energy Mater., 7
Pan, 2018, Adv. Mater., 30, 10.1002/adma.201802016
Zhou, 2018, J. Am. Chem. Soc., 140, 9282, 10.1021/jacs.8b05741
Hong, 2018, Nano Energy, 50, 785, 10.1016/j.nanoen.2018.06.030
Deng, 2018, Sci. Adv., 4, 10.1126/sciadv.aar5606
Yu, 2015, Intermetallics, 66, 40, 10.1016/j.intermet.2015.06.020
Yu, 2015, Mater. Des., 88, 743, 10.1016/j.matdes.2015.09.074
Zhu, 2017, Nano Energy, 42, 8, 10.1016/j.nanoen.2017.10.034
Kuo, 2018, Energy Environ. Sci., 11, 429, 10.1039/C7EE03326E
Zhou, 2015, ACS Appl. Mater. Interfaces, 7, 21015, 10.1021/acsami.5b07144
Yu, 2017, Nano Energy, 37, 203, 10.1016/j.nanoen.2017.05.031
Wang, 2018, ACS Appl. Mater. Interfaces, 10, 23277, 10.1021/acsami.8b01719
Hong, 2018, Adv. Mater., 30, 10.1002/adma.201705942
Abdellaoui, 2019, Acta Mater., 178, 135, 10.1016/j.actamat.2019.07.031
Liu, 2012, Nano Energy, 1, 42, 10.1016/j.nanoen.2011.10.001
Pei, 2011, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878
Biswas, 2011, Nat. Chem., 3, 160, 10.1038/nchem.955
Yu, 2018, ACS Appl. Mater. Interfaces, 10, 3609, 10.1021/acsami.7b17142
Raabe, 2014, Curr. Opin. Solid State Mater. Sci., 18, 253, 10.1016/j.cossms.2014.06.002
Kuzmina, 2015, Science, 349, 1080, 10.1126/science.aab2633
Tang, 2015, Nat. Commun., 6, 7584, 10.1038/ncomms8584
Qiu, 2019, Adv. Energy Mater., 9, 10.1002/aenm.201803447
Wei, 2017, Appl. Phys. Lett., 110, 10.1063/1.4975603
Cantwell, 2014, Acta Mater., 62, 1, 10.1016/j.actamat.2013.07.037
Xiao, 2017, J. Am. Chem. Soc., 139, 18732, 10.1021/jacs.7b11662
Jiang, 2013, Nano Lett., 13, 2851, 10.1021/nl401186d
Rao, 2015, Nat. Commun., 6, 10040, 10.1038/ncomms10040
Medlin, 2013, Jom, 65, 390, 10.1007/s11837-012-0530-y
Chang, 2018, Science, 360, 778, 10.1126/science.aaq1479
Duong, 2016, Nat. Commun., 7, 13713, 10.1038/ncomms13713
Deng, 2018, Energy Environ. Sci., 11, 1520, 10.1039/C8EE00290H
Roychowdhury, 2018, Angew. Chem., Int. Ed. Engl., 57, 4043, 10.1002/anie.201801491
Wu, 2015, Nano Energy, 13, 626, 10.1016/j.nanoen.2015.03.034
Wu, 2019, Mater. Horiz., 6, 1548, 10.1039/C9MH00543A
Wu, 2018, Adv. Mater., 30
Zeier, 2016, Angew. Chem., Int. Ed. Engl., 55, 6826, 10.1002/anie.201508381
Gault, 2018, J. Mater. Res., 33, 4018, 10.1557/jmr.2018.375
Kelly, 2007, Rev. Sci. Instrum., 78, 10.1063/1.2709758
Gault, 2016, Appl. Microsc., 46, 117, 10.9729/AM.2016.46.3.117
Thompson, 2007, Ultramicroscopy, 107, 131, 10.1016/j.ultramic.2006.06.008
Liebscher, 2018, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.015702
Kolli, 2018, Jom, 70, 1725, 10.1007/s11837-018-2934-9
Herbig, 2018, Scr. Mater., 148, 98, 10.1016/j.scriptamat.2017.03.017
Makineni, 2018, Jom, 70, 1736, 10.1007/s11837-018-2802-7
Jacoby, 2005, Chem. Eng. News, 83, 13, 10.1021/cen-v083n048.p013
Müller, 1968, Rev. Sci. Instrum., 39, 83, 10.1063/1.1683116
Gault, 2006, Rev. Sci. Instrum., 77, 10.1063/1.2194089
Da Costa, 2005, Rev. Sci. Instrum., 76, 10.1063/1.1829975
Kelly, 2004, Microsc. Microanal., 10, 373, 10.1017/S1431927604040565
Seidman, 2007, Annu. Rev. Mater. Res., 37, 127, 10.1146/annurev.matsci.37.052506.084200
Amouyal, 2016, MRS Bull., 41, 13, 10.1557/mrs.2015.313
Saxey, 2018, Scr. Mater., 148, 115, 10.1016/j.scriptamat.2017.11.014
Gordon, 2015, Science, 347, 746, 10.1126/science.1258950
Langelier, 2017, Sci. Rep., 7, 39958, 10.1038/srep39958
Perea, 2016, Sci. Rep., 6, 22321, 10.1038/srep22321
Rusitzka, 2018, Sci. Rep., 8, 17615, 10.1038/s41598-018-36110-y
Larson, D. J., et al., Local electrode atom probe tomography. 2013.
Yu, 2017, Sci. Rep., 7, 2463, 10.1038/s41598-017-02507-4
Prosa, 2017, Microsc. Microanal., 23, 194, 10.1017/S1431927616012642
Melmed, 1991, J. Vac. Sci. Technol., B, 9, 601, 10.1116/1.585467
Miller, 2007, Microsc. Microanal., 13, 428, 10.1017/S1431927607070845
Miller, 2007, Ultramicroscopy, 107, 761, 10.1016/j.ultramic.2007.02.023
Vurpillot, 2013, Ultramicroscopy, 132, 19, 10.1016/j.ultramic.2013.03.010
Larson, 2013, Curr. Opin. Solid State Mater. Sci., 17, 236, 10.1016/j.cossms.2013.09.002
Hu, 2017, Science, 355, 1292, 10.1126/science.aal5166
Jiang, 2017, Nature, 544, 460, 10.1038/nature22032
Gault, 2010, Scr. Mater., 63, 784, 10.1016/j.scriptamat.2010.06.014
Thompson, 2007, Science, 317, 1370, 10.1126/science.1145428
Zhu, 2018, Adv. Mater., 30, 1706735, 10.1002/adma.201706735
Peng, 2018, Ultramicroscopy, 189, 54, 10.1016/j.ultramic.2018.03.018
Kelly, 2013, Microsc. Microanal., 19, 652, 10.1017/S1431927613000494
Zhou, 2018, Nanoscale, 10, 14830, 10.1039/C8NR04883E
Peng, 2016, Energy Environ. Sci., 9, 454, 10.1039/C5EE03366G
Li, 2017, Chem. Mater., 29, 605, 10.1021/acs.chemmater.6b04066
Pei, 2011, Adv. Energy Mater., 1, 291, 10.1002/aenm.201000072
Yamini, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201501047
Pei, 2014, Adv. Energy Mater., 4, 10.1002/aenm.201400486
Huang, 2016, Scr. Mater., 118, 19, 10.1016/j.scriptamat.2016.03.006
Wu, 2015, Energy Environ. Sci., 8, 3298, 10.1039/C5EE02423D
Fu, 2015, Energy Environ. Sci., 8, 216, 10.1039/C4EE03042G
Siegert, 2014, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/1/013001
Hu, 2014, Adv. Funct. Mater., 24, 5211, 10.1002/adfm.201400474
Hao, 2017, Materials, 10, 251, 10.3390/ma10030251
Liu, 2017, Adv. Mater., 29
Hu, 2018, Adv. Energy Mater., 8, 10.1002/aenm.201802116
Roychowdhury, 2018, Angew. Chem., Int. Ed. Engl., 57, 15167, 10.1002/anie.201809841
Korkosz, 2014, J. Am. Chem. Soc., 136, 3225, 10.1021/ja4121583
Kim, 2016, Mater. Horiz., 3, 234, 10.1039/C5MH00299K
Kim, 2017, Phys. Status Solidi B, 254, 10.1002/pssb.201600103
Ashby, 1970, Philos. Mag., 21, 399, 10.1080/14786437008238426
Shen, 2010, Energy Environ. Sci., 3, 1519, 10.1039/c0ee00012d
Hu, 2018, Adv. Funct. Mater., 28, 10.1002/adfm.201803617
Ge, 2018, Scr. Mater., 143, 90, 10.1016/j.scriptamat.2017.09.020
Meng, 2017, Adv. Energy Mater., 7, 1602582, 10.1002/aenm.201602582
Kwiatkowski da Silva, 2017, Acta Mater., 124, 305, 10.1016/j.actamat.2016.11.013
Klemens, 1955, Proc. Phys. Soc., London, Sect. A, 68, 1113, 10.1088/0370-1298/68/12/303
Cottrell, 1949, Proc. Phys. Soc., London, Sect. A, 62, 49, 10.1088/0370-1298/62/1/308
Ackerman, 1971, J. App. Phys., 42, 968, 10.1063/1.1660194
Blavette, 1999, Science, 286, 2317, 10.1126/science.286.5448.2317
Miller, 2006, Microsc. Res. Tech., 69, 359, 10.1002/jemt.20291
Miller, 2006, J. Mater. Sci., 41, 7808, 10.1007/s10853-006-0518-5
Jhon, 2017, Acta Mater., 130, 339, 10.1016/j.actamat.2017.02.032
Callaway, 1960, Phys. Rev., 120, 1149, 10.1103/PhysRev.120.1149
Zhou, 2018, Phys. Rev. B, 97, 10.1103/PhysRevB.97.085304
Mao, 2015, Nano Energy, 17, 279, 10.1016/j.nanoen.2015.09.003
Zhang, 2018, Adv. Funct. Mater., 28
Shin, 2018, ACS Appl. Mater. Interfaces, 10, 3689, 10.1021/acsami.7b18451
Tan, 2016, Nat. Commun., 7, 12167, 10.1038/ncomms12167
Zhou, 2015, RSC Adv., 5, 69268, 10.1039/C5RA09615D
Jood, 2018, Joule, 2, 1339, 10.1016/j.joule.2018.04.025
He, 2012, Nano Lett., 12, 5979, 10.1021/nl303449x
Kuo, 2019, Adv. Mater. Interfaces, 6, 10.1002/admi.201900429
Ohno, 2018, Joule, 2, 141, 10.1016/j.joule.2017.11.005
Wood, 2019, Adv. Mater., 31, 10.1002/adma.201902337
Medlin, 2009, Curr. Opin. Colloid Interface Sci., 14, 226, 10.1016/j.cocis.2009.05.001
Mun, 2015, ChemSusChem, 8, 2312, 10.1002/cssc.201403485
Ge, 2015, Mater. Today, 19, 227, 10.1016/j.mattod.2015.10.004
He, 2013, Mater. Today, 16, 166, 10.1016/j.mattod.2013.05.004
Hanus, 2018, Commun. Phys., 1, 78, 10.1038/s42005-018-0070-z
Li, 2010, NPG Asia Mater., 2, 152, 10.1038/asiamat.2010.138
Vineis, 2010, Adv. Mater., 22, 3970, 10.1002/adma.201000839
Zhao, 2014, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E
Pichanusakorn, 2010, Mater. Sci. Eng., R, 67, 19, 10.1016/j.mser.2009.10.001
Sheskin, 2018, ACS Appl. Mater. Interfaces, 10, 38994, 10.1021/acsami.8b15204
Yamini, 2016, Nano Energy, 26, 157, 10.1016/j.nanoen.2016.05.019
Kim, 2017, ACS Appl. Mater. Interfaces, 9, 21791, 10.1021/acsami.7b04098
Blum, 2012, J. Electron. Mater., 41, 1583, 10.1007/s11664-012-1972-2
Kim, 2014, Jom, 66, 2288, 10.1007/s11837-014-1155-0
Lensch-Falk, 2010, J. Alloys Compd., 504, 37, 10.1016/j.jallcom.2010.05.054
Cojocaru-Miredin, 2017, ACS Appl. Mater. Interfaces, 9, 14779, 10.1021/acsami.7b00689
Vurpillot, 2000, Appl. Phys. Lett., 76, 3127, 10.1063/1.126545
Vurpillot, 2009, AIP Conf. Proc., 1173, 175, 10.1063/1.3251216
Hong, 2019, J. Am. Chem. Soc., 141, 1742, 10.1021/jacs.8b12624
Gault, 2012, Scr. Mater., 66, 903, 10.1016/j.scriptamat.2012.02.021
Liebscher, 2018, Phys. Rev. Mater., 2
Zhou, 2018, J. Am. Chem. Soc., 140, 15535, 10.1021/jacs.8b10448