Revealing microstructural evolution and mechanical properties of resistance spot welded NiTi-stainless steel with Ni or Nb interlayer
Tài liệu tham khảo
Otsuka, 2005, Prog. Mater. Sci., 50, 511, 10.1016/j.pmatsci.2004.10.001
Kim, 2009, Micro artificial muscle fiber using NiTi spring for soft robotics, 2228
Patel, 2020, Mater. Today Proc., 33, 5548, 10.1016/j.matpr.2020.03.538
Deng, 2021, J. Manuf. Process., 64, 379, 10.1016/j.jmapro.2021.01.024
Yuhua, 2017, Opt. Laser Technol., 91, 197, 10.1016/j.optlastec.2016.12.028
Zhou, 2018, J. Alloys Compd., 735, 2616, 10.1016/j.jallcom.2017.11.307
Oliveira, 2017, Prog. Mater. Sci., 88, 412, 10.1016/j.pmatsci.2017.04.008
Zhang, 2022, Mater. Sci. Eng. A, 848
Shamsolhodaei, 2020, Intermetallics, 116, 10.1016/j.intermet.2019.106656
Zeng, 2022, Adv. Mater., 11, 14, 10.11648/j.am.20221101.12
Zhang, 2022, Mater. Sci. Eng. A, 835
Gugel, 2008, Mater. Sci. Eng. A, 481–482, 668, 10.1016/j.msea.2006.11.179
Wang, 2022, J. Mater. Res. Technol., 18, 1028, 10.1016/j.jmrt.2022.03.022
Pouquet, 2012, Int. J. Adv. Manuf. Technol., 61, 205, 10.1007/s00170-011-3694-7
Burdet, 2013, Acta Mater., 61, 3090, 10.1016/j.actamat.2013.01.069
Mohd Jani, 2014, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084
M.M. Kheirikhah, S. Rabiee, M.E. Edalat, A Review of Shape Memory Alloy Actuators in Robotics BT - Robocup 2010: Robot Soccer World Cup XIV, in: J. Ruiz-del-Solar, E. Chown, P.G. Plöger (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 206–217.
Mirshekari, 2013, Opt. Laser Technol., 54, 151, 10.1016/j.optlastec.2013.05.014
Niu, 2021, J. Mater. Sci. Technol., 61, 16, 10.1016/j.jmst.2020.05.043
Van Der Eijk, 2004, Plasma welding of NiTi to NiTi, stainless steel and hastelloy C276, 125
Chen, 2020, Mater. Sci. Eng. A, 771
Li, 2013, Z. Lv, Mater. Des., 50, 342, 10.1016/j.matdes.2013.03.014
Ng, 2015, Process. Technol., 226, 69, 10.1016/j.jmatprotec.2015.06.039
Vannod, 2011, Acta Mater., 59, 6538, 10.1016/j.actamat.2011.06.031
Ao, 2022, Ultrasonics, 121, 10.1016/j.ultras.2022.106684
Li, 2020, Smart Mater. Struct., 29
Lezaack, 2022, Sci. Technol. Weld. Join., 1
Brandal, 2013, J. Manuf. Sci. Eng., 135, 1, 10.1115/1.4025495
Schmal, 2020, Weld. World, 64, 1471, 10.1007/s40194-020-00922-2
Zhang, 2019, J. Mater. Process. Technol., 271, 23, 10.1016/j.jmatprotec.2019.03.024
Liu, 2010, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 41, 2651, 10.1007/s11661-010-0333-0
Sharifi, 2014, J. Mater. Eng. Perform., 23, 1408, 10.1007/s11665-013-0856-9
Shamsolhodaei, 2019, Sci. Technol. Weld. Join., 24, 706, 10.1080/13621718.2019.1595926
Onar, 2022, Trans. Indian Inst. Met., 75, 1731, 10.1007/s12666-021-02446-9
Li, 2013, Opt. Laser Technol., 45, 453, 10.1016/j.optlastec.2012.06.010
Xu, 2012, Mater. Sci. Eng. A, 537, 11, 10.1016/j.msea.2011.12.096
Asadi, 2022, J. Mater. Res. Technol., 16, 25, 10.1016/j.jmrt.2021.11.154
Bocklund, 2020, Materialia, 11, 10.1016/j.mtla.2020.100689
Eiken, 2020, Materialia, 9, 10.1016/j.mtla.2019.100538
Asadi, 2020, J. Manuf. Process., 55, 13, 10.1016/j.jmapro.2020.03.041
Hoppe, 2019, Interdiscip. J. Eng. Sci., 1, 1
Yan, 2010, Opt. Lasers Eng., 48, 512, 10.1016/j.optlaseng.2009.08.009
Guo, 2018, J. Mater. Process. Technol., 260, 146, 10.1016/j.jmatprotec.2018.05.025
Sun, 2021, Opt. Laser Technol., 140, 10.1016/j.optlastec.2021.107071
Oliveira, 2016, Mater. Des., 100, 180, 10.1016/j.matdes.2016.03.137
Oliveira, 2016, Acta Mater, 105, 9, 10.1016/j.actamat.2015.12.021
Li, 2021, J. Mater. Sci. Technol., 79, 191, 10.1016/j.jmst.2020.11.050
Chu, 2021, Metals (Basel), 11, 1
Shamsolhodaei, 2022, J. Manuf. Process., 81, 467, 10.1016/j.jmapro.2022.07.006
Xia, 2022, Mater. Des., 224, 10.1016/j.matdes.2022.111320
Xue, 2023, J. Mater. Sci. Technol., 148, 138, 10.1016/j.jmst.2023.01.001
Wang, 2022, Compos. Part B-Eng., 242
Nikoli, 2018, Mater. Sci. Eng. A, 737, 422, 10.1016/j.msea.2018.09.027