Retrospective investigation of combination therapy with clarithromycin and levofloxacin for pulmonary Mycobacterium avium complex disease
Tóm tắt
Fluoroquinolones are often used for the treatment of refractory Mycobacterium avium complex (MAC) disease when the clinical efficacy of the recommended regimen, which includes clarithromycin (CAM), rifampicin (RFP), and ethambutol (EB), is insufficient. However, recent in vitro and in vivo studies have suggested that fluoroquinolones decreased the antibacterial activity of CAM when they were administered in combination. In this study, we retrospectively investigated the influence of the combination of CAM and levofloxacin (LVFX) on clinical outcomes for pulmonary MAC disease patients. Pulmonary MAC disease patients from 2010 to 2012 were divided into two groups, those who received LVFX together with CAM (LVFX group) and those who received CAM without LVFX (control group). The number of patients who showed improvement was evaluated at 1, 3, 6 and 12 months after the start of therapy based on bacteriological examination (culture and smear examination) and the bacilli negative conversion rate. There were no significant differences between the LVFX group (n = 18, 64.5 ± 6.5 years old) and the control group (n = 57, 71.0 ± 7.0 years old) in terms of gender, age, etiologic agent, baseline culture examination score, concomitant medication, and dosage of each drug. The clinical outcomes in the LVFX group were inferior to those in the control group at all endpoints and observational periods, and we found a significant difference in the percent improvement of the smear examination by fluorescence microscopy method (38 % vs. 83 %) and the bacilli negative conversion rate (38 % vs. 79 %) at 3 months. Our study suggests that the combination of CAM and LVFX causes unfavorable clinical outcomes for pulmonary MAC disease treatment. There was no significant difference between both groups in terms of frequency of adverse events. The possibility that combined administration of CAM and LVFX causes unfavorable clinical outcomes for pulmonary MAC disease treatment was suggested.
Tài liệu tham khảo
Yamamoto M, Kuze F, Sakatani M, Saito H, Shimoide H, Soejima R, et al. The clinical study of clarithromycin for pulmonary Mycobacterium avium–intracellulare complex infection. Kekkaku. 1997;72:1–7.
Wallace Jr RJ, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am J Respir Crit Care Med. 1996;153:1766–72.
Sato K, Ebe T. A study on the effect of combined chemotherapy on Mycobacterium avium complex pulmonary disease. Kekkaku. 2000;75:471–6.
Park CK, Kwon YS. Respiratory review of 2014: tuberculosis and nontuberculous mycobacterial pulmonary disease. Tuberc Respir Dis. 2014;77:161–6.
Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest. 2004;126:566–81.
Koh WJ, Jeong BH, Jeon K, Lee NY, Lee KS, Woo SY, et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M. avium complex lung disease. Chest. 2012;142:1482–8.
Kobashi Y, Oka M. Long–term observation of pulmonary Mycobacterium avium complex disease treated with chemotherapy following the guidelines for treatment. Kekkaku. 2008;83:779–84.
Tanaka E, Kimoto T, Tsuyuguchi K, Watanabe I, Matsumoto H, Niimi A, et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am J Respir Crit Care Med. 1999;160:866–72.
Kawahara S, Tada A, Nagare H. Comparison of in vitro antimicrobial activities of ofloxacin, levofloxacin, ciprofloxacin, and sparfloxacin against various mycobacteria. Kekkaku. 2001;76:357–62.
Sano C, Tatano Y, Shimizu T, Yamabe S, Sato K, Tomioka H. Comparative in vitro and in vivo antimicrobial activities of sitafloxacin, gatifloxacin and moxifloxacin against Mycobacterium avium. Int J Antimicrob Agents. 2011;37:296–301.
Jenkins PA, Campbell IA, Banks J, Gelder CM, Prescott RJ, Smith AP. Clarithromycin vs ciprofloxacin as adjuncts to rifampicin and ethambutol in treating opportunist mycobacterial lung diseases and an assessment of Mycobacterium vaccae immunotherapy. Thorax. 2008;63:627–34.
Fujita M, Kajiki A, Tao Y, Miyazaki M, Ouchi H, Harada E, et al. The clinical efficacy and safety of a fluoroquinolone–containing regimen for pulmonary MAC disease. J Infect Chemother. 2012;18:146–51.
Taga S, Ogawa K, Nakagawa T, Tano M. The clinical study on efficacy of clarithromycin, levofloxacin, and streptomycin for pulmonary Mycobacterium avium–intracellulare complex infection. Kekkaku. 2005;80:1–7.
Kohno Y, Ohno H, Miyazaki Y, Higashiyama Y, Yanagihara K, Hirakata Y, et al. In vitro and in vivo activities of novel fluoroquinolones alone and in combination with clarithromycin against clinically isolated Mycobacterium avium complex strains in Japan. Antimicrob Agents Chemother. 2007;51:4071–6.
Koh WJ, Hong G, Kim SY, Jeong BH, Park HY, Jeon K, et al. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin–containing regimen. Antimicrob Agents Chemother. 2013;57:2281–5.
Kobashi Y, Oka M. Clinical effect of combined chemotherapy containing aminoglycoside or new quinolone antibiotics for Mycobacterium avium complex disease. Kekkaku. 2013;88:367–9.
Middleton AM, Chadwick MV, Nicholson AG, Dewar A, Feldman C, Wilson R. Investigation of mycobacterial colonisation and invasion of the respiratory mucosa. Thorax. 2003;58:246–51.
Togami K, Chono S, Morimoto K. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages. Biopharm Drug Dispos. 2011;32:389–97.
Sikri V, Pal D, Jain R, Kalyani D, Mitra AK. Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P–glycoprotein efflux. Am J Ther. 2004;11:433–42.