Retrospective analysis of the diagnostic accuracy of lung ultrasound for pulmonary embolism in patients with and without pleuritic chest pain

The Ultrasound Journal - Tập 14 Số 1
Peiman Nazerian1, Chiara Gigli2, Angelika Reißig1, Emanuele Pivetta3, Simone Vanni2, Thomas Fraccalini4, Giordana Ferraris4, Alessandra Ricciardolo5, Stefano Grifoni1, Giovanni Volpicelli4
1Careggi University Hospital, Florence, Italy
2San Giuseppe Hospital, Empoli, Italy
3A.O.U. Città della Salute e della Scienza di Turin–Molinette University Hospital, Torino, Italy
4Emergency Medicine, San Luigi Gonzaga University Hospital, Turin, Italy
5SRH Poliklinik Gera GmbH, Jena, Germany

Tóm tắt

Abstract Background Lung ultrasound (LUS) has a role in the diagnosis of pulmonary embolism (PE) mainly based on the visualization of pulmonary infarctions. However, examining the whole chest to detect small peripheral infarctions by LUS may be challenging. Pleuritic pain, a frequent presenting symptom in patients with PE, is usually localized in a restricted chest area identified by the patient itself. Our hypothesis is that sensitivity of LUS for PE in patients with pleuritic chest pain may be higher due to the possibility of focusing the examination in the painful area. We combined data from three prospective studies on LUS in patients suspected of PE and extracted data regarding patients with and without pleuritic pain at presentation to compare the performances of LUS. Results Out of 872 patients suspected of PE, 217 (24.9%) presented with pleuritic pain and 279 patients (32%) were diagnosed with PE. Pooled sensitivity of LUS for PE in patients with and without pleuritic chest pain was 81.5% (95% CI 70–90.1%) and 49.5% (95% CI 42.7–56.4%) (p < 0.001), respectively. Specificity of LUS was similar in the two groups, respectively 95.4% (95% CI 90.7–98.1%) and 94.8% (95% CI 92.3–97.7%) (p = 0.86). In patients with pleuritic pain, a diagnostic strategy combining Wells score with LUS performed better both in terms of sensitivity (93%, 95% CI 80.9–98.5% vs 90.7%, 95% CI 77.9–97.4%) and negative predictive value (96.2%, 95% CI 89.6–98.7% vs 93.3%, 95% CI 84.4–97.3%). Efficiency of Wells score + LUS outperformed the conventional strategy based on Wells score + d-dimer (56.7%, 95% CI 48.5–65% vs 42.5%, 95% CI 34.3–51.2%, p = 0.02). Conclusions In a population of patients suspected of PE, LUS showed better sensitivity for the diagnosis of PE when applied to the subgroup with pleuritic chest pain. In these patients, a diagnostic strategy based on Wells score and LUS performed better to exclude PE than the conventional strategy combining Wells score and d-dimer.

Từ khóa


Tài liệu tham khảo

Jones K, Raghuram A (1999) Investigation and management of patients with pleuritic chest pain presenting to the accident and emergency department. J Accid Emerg Med 16(1):55–59. https://doi.org/10.1136/emj.16.1.55

Konstantinides SV, Meyer G, Becattini C et al (2020) 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 41(4):543–603. https://doi.org/10.1093/eurheartj/ehz405

Stein PD, Henry JW (1997) Clinical characteristics of patients with acute pulmonary embolism stratified according to their presenting syndromes. Chest 112(4):974–979. https://doi.org/10.1378/chest.112.4.974

Volpicelli G, Lamorte A, Tullio M et al (2013) Point-of-care multiorgan ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensiv Care Med 39(7):1290–1298. https://doi.org/10.1007/s00134-013-2919-7

Zanobetti M, Scorpiniti M, Gigli C et al (2017) Point-of-care ultrasonography for evaluation of acute dyspnea in the ED. Chest 151(6):1295–1301. https://doi.org/10.1016/j.chest.2017.02.003

Volpicelli G, Gargani L, Perlini S et al (2021) Lung ultrasound for the early diagnosis of COVID-19 pneumonia: an international multicenter study. Intensiv Care Med 47(4):444–454. https://doi.org/10.1007/s00134-021-06373-7

Volpicelli G, Elbarbary M, Blaivas M et al (2012) International evidence-based recommendations for point-of-care lung ultrasound. Intensiv Care Med 38(4):577–591. https://doi.org/10.1007/s00134-012-2513-4

Mathis G, Blank W, Reissig A et al (2005) Thoracic ultrasound for diagnosing pulmonary embolism: a prospective multicenter study of 352 patients. Chest 128(3):1531–1538. https://doi.org/10.1378/chest.128.3.1531

Squizzato A, Rancan E, Dentali F, Bonzini M, Guasti L, Steidl L, Mathis G, Ageno W (2013) Diagnostic accuracy of lung ultrasound for pulmonary embolism: a systematic review and meta-analysis. J Thromb Haemost 11(7):1269–1278. https://doi.org/10.1111/jth.12232

Niemann T, Egelhof T, Bongartz G (2009) Transthoracic sonography for the detection of pulmonary embolism–a meta-analysis. Ultraschall Med 30(2):150–156. https://doi.org/10.1055/s-2008-1027856

Jiang L, Ma Y, Zhao C et al (2015) Role of transthoracic lung ultrasonography in the diagnosis of pulmonary embolism: a systematic review and meta-analysis. PLoS ONE 10(6):e0129909. https://doi.org/10.1371/journal.pone.0129909

Nazerian P, Vanni S, Volpicelli G et al (2014) Accuracy of point-of-care multiorgan ultrasonography for the diagnosis of pulmonary embolism. Chest 145(5):950–957. https://doi.org/10.1378/chest.13-1087

Nazerian P, Volpicelli G, Vanni S et al (2015) Accuracy of lung ultrasound for the diagnosis of consolidations when compared to chest computed tomography. Am J Emerg Med 33(5):620–625. https://doi.org/10.1016/j.ajem.2015.01.035

Volpicelli G, Cardinale L, Berchialla P, Mussa A, Bar F, Frascisco MF (2012) A comparison of different diagnostic tests in the bedside evaluation of pleuritic pain in the ED. Am J Emerg Med 30(2):317–324. https://doi.org/10.1016/j.ajem.2010.11.035

Volpicelli G, Caramello V, Cardinale L, Cravino M (2008) Diagnosis of radio-occult pulmonary conditions by real-time chest ultrasonography in patients with pleuritic pain. Ultrasound Med Biol 34(11):1717–1723. https://doi.org/10.1016/j.ultrasmedbio.2008.04.006

Reissig A, Heyne JP, Kroegel C (2001) Sonography of lung and pleura in pulmonary embolism: sonomorphologic characterization and comparison with spiral CT scanning. Chest 120(6):1977–1983. https://doi.org/10.1378/chest.120.6.1977

Nazerian P, Volpicelli G, Gigli C, Becattini C, Sferrazza Papa GF, Grifoni S, Vanni S, Ultrasound wells study group (2017) Diagnostic performance of wells score combined with point-of-care lung and venous ultrasound in suspected pulmonary embolism. Acad Emerg Med 24(3):270–280. https://doi.org/10.1111/acem.13130 (PMID: 27859891)

Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Wells PS, Anderson DR, Rodger M et al (2000) Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost 83(3):416–420 (PMID: 10744147)

Hawass NE (1997) Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients. Br J Radiol 70(832):360–366. https://doi.org/10.1259/bjr.70.832.9166071

Katus HA, Remppis A, Neumann FJ et al (1991) Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 83:902–912. https://doi.org/10.1161/01.CIR.83