Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera

Atmospheric Measurement Techniques - Tập 7 Số 9 - Trang 2807-2828
A. J. Prata1, Cirilo Bernardo1
1Nicarnica Aviation AS, Kjeller, Norway

Tóm tắt

Abstract. Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm) imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz) ground-based uncooled thermal imager (Cyclops), operating with four spectral channels at central wavelengths of 8.6, 10, 11 and 12 μm and one broadband channel (7–14 μm) has been tested at several volcanoes and at an industrial site, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The noise-equivalent temperature difference (NEΔT) of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4 and 0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and the atmosphere.

Từ khóa


Tài liệu tham khảo

Andronico, D., Corsaro, R., Cristaldi, A., and Polacci, M.: Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: An example from the 9 January 2005 explosion, J. Volcanol. Geothermal Res., 176, 541–550, 2008.

Barrancos, J., Roselló, J. I., Calvo, D., Padrón, E., Melián, G., Hernández, P. A., Pérez, N. M., Millán, M. M., and Galle, B.: SO2 emission from active volcanoes measured simultaneously by COSPEC and mini-DOAS, Pure Appl. Geophys., 165, 115–133, 2008.

Berk, A., Bernstein, L., Anderson, G., Acharya, P., Robertson, D., Chetwynd, J., and Adler-Golden, S.: MODTRAN cloud and multiple scattering upgrades with application to AVIRIS, Remote Sens. Environ., 65, 367–375, 1998.

Berk, A., Anderson, G. P., Bernstein, L. S., Acharya, P. K., Dothe, H., Matthew, M. W., Adler-Golden, S. M., Chetwynd Jr., J. H., Richtsmeier, S. C., Pukall, B., et al.: MODTRAN4 radiative transfer modeling for atmospheric correction, in: SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, International Society for Optics and Photonics, 348–353, 1999.

Bluth, G., Shannon, J., Watson, I., Prata, A., and Realmuto, V.: Development of an Ultra-violet Digital Camera for Volcanic SO2 Imaging, J. Volcanol. Geothermal Res., 161, 47–56, 2007.

Bobrowski, N., Honninger, G., Galle, B., and Platt, U.: Detection of Bromine Monoxide in a Volcanic Plume, Nature, 423, 273–276, 2003.

Bobrowski, N., Hönninger, G., Lohberger, F., and Platt, U.: IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions, J. Volcanol. Geothermal Res., 150, 329–338, 2006.

Burton, M., Oppenheimer, C., Horrocks, L., and Francis, P.: Remote Sensing of CO2 and H2O Emission Rates from Masaya Volcano, Nicaragua, Geology, 28, 915–918, https://doi.org/10.1130/0091-7613(2000)282.0.CO;2, 2000.

Chu, P., Guenther, F., Rhoderick, G., and Lafferty, W.: The NIST Quantitative Infrared Database, J. Res. Natl. Inst. Stand. Technol., 104, 59–81, 1999.

Davis, P. and Viezee, W.: A Model for Computing the Infrared Transmission Through Atmospheric Water Vapour and Carbon Dioxide, J. Geophys. Res., 69, 3785–3794, 1964.

Derniak, E. and Boremann, G.: Infrared Detectors and Systems, John Wiley and Sons, Inc., 605 Third Avenue, New York, NY, 561 pp., 1996.

Draxler, R. and Rolph, G.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, MD, USA, model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), 2003.

Esler, M. B., Griffith, D. W., Wilson, S. R., and Steele, L. P.: Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air, Anal. Chem., 72, 206–215, 2000.

Francis, P., Maciejewski, A., Oppenheimer, C., Chaffin, C., and Caltabiano, T.: SO2? HCl ratios in the plumes from Mt. Etna and Vulcano determined by Fourier Transform Spectroscopy, Geophys. Res. Lett., 22, 1717–1720, 1995.

Gangale, G., Prata, A. J., and Clarisse, L.: The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements, Remote Sens. Environ., 114, 414–425, 2010.

Goff, F., Love, S. P., Warren, R., Counce, D., Obenholzner, J., Siebe, C., and Schmidt, S. C.: Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatepetl Volcano, Mexico, Chemical Geology, 177, 133–156, 2001.

Horrocks, K.: Open-path Fourier Transform Infrared Spectroscopy of SO2: An Empirical Error Budget Analysis, with Implications for Volcano Monitoring, J. Geophys. Res., 106, 7647–2765, 2001.

Horton, K., Williams-Jones, G., Garbeil, H., Elias, T., Sutton, A., Mouginis-Mark, P., Porter, J., and Clegg, S.: Real-time Measurement of Volcanic SO2 Emissions: Validation of a New UV Correlation Spectrometer (FLYSPEC), Bull. Volcanol., 68, 313–322, https://doi.org/10.1007/s00445-005-0026-5, 2006.

Jaeschke, W., Berresheim, H., and Georgii, H.-W.: Sulfur emissions from Mt. Etna, J. Geophys. Res. Ocean., 87, 7253–7261, 1982.

Kern, C., Lübckeb, P., Bobrowski, N., Campion, R., Mori, T., Smekens, J.-F., Stebel, K., Tamburello, G., Burton, M., Platt, U., and Prata, A.: Intercomparison of SO2 camera systems for imaging volcanic gas plumes, J. Volcanol. Geothermal Res., in review, 2014.

Kinoshita, K., Kanagaki, C., Minaka, A., Tsuchida, S., Matsui, T., Tupper, A., Yakiwara, H., and Iino, N.: Ground and Satellite Monitoring of Volcanic Aerosols in Visible and Infrared Bands, CERes Int. Symp. On Remote Sensing–sMonitoring of Environmental Change in Asia, 16–17, chiba, Japan Dec., 2003.

Krueger, A., Stremme, W., Harig, R., and Grutter, M.: Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission rates, Atmos. Meas. Tech., 6, 47–61, https://doi.org/10.5194/amt-6-47-2013, 2013.

Kruse, P.: Uncooled Thermal Imaging: Arrays, Systems, and Applications, SPIE Press (TT51), 90 pp., Bellingham, Washington., 2001.

Lentile, L. B., Holden, Z. A., Smith, A. M., Falkowski, M. J., Hudak, A. T., Morgan, P., Lewis, S. A., Gessler, P. E., and Benson, N. C.: Remote sensing techniques to assess active fire characteristics and post-fire effects, Int. J. Wildland Fire, 15, 319–345, 2006.

Lopez, T., Fee, D., Prata, F., and Dehn, J.: Characterization and interpretation of volcanic activity at Karymsky Volcano, Kamchatka, Russia, using observations of infrasound, volcanic emissions, and thermal imagery, Geochem. Geophys. Geosys., 14, 5106–5127, 2013.

Lopez, T., Thomas, H., Prata, A., Amigo, A., and Fee, D.: Volcanic plume characteristics determined using an infrared imaging camera, J. Volcanol. Geothermal Res., 14, 5106–5127, https://doi.org/10.1002/2013GC004817, 2014.

Love, S., Goff, F., Counce, D., Siebe, C., and Delgado, H.: Passive infrared spectroscopy of the eruption plume at Popocatepetl volcano, Mexico, Nature, 396, 563–567, 1998.

McGonigle, A.: Volcano Remote Sensing with Ground-based Spectroscopy, Phil. Trans. Roy. Soc. A, 363, 2915–2929, 2005.

McMillin, L. and Crosby, D.: Theory and Validation of the Multiple Window Sea Surface Temperature Technique, J. Geophys. Res., 89, 3655–3661, 1984.

Notsu, K., Mori, T., Igarashi, G., Tohjima, Y., and Wakita, H.: Infrared Spectral Radiometer: A New Tool for Remote Measurement of SO2 of Volcanic Gas, Geochem. J., 27, 361–366, 2003.

Oppenheimer, C., Francis, P., Burton, M., Maciejewksi, A. J. H., and Boardman, L.: Remote Measurement of Volcanic Gases by Fourier Transform Infrared Spectroscopy, Appl. Phys. B, 67, 505–515, 1998.

Oppenheimer, C., Edmonds, M., Francis, P., and Burton, M.: Variation in HCl/SO2 Gas Ratios Observed by Fourier Transform Spectroscopy At Soufriere Hills, edited by: Druitt, T. H. and Kokelaar, P., Geol. Soc. London Mem., 21, 621–639, the eruption of Soufriere Hills volcano, Montserrat, from 1995 to 1999, 2002.

Oppenheimer, C., Tsanev, V. I., Braban, C. F., Cox, R. A., Adams, J. W., Aiuppa, A., Bobrowski, N., Delmelle, P., Barclay, J., and McGonigle, A. J.: BrO formation in volcanic plumes, Geochim. Cosmochim. Acta, 70, 2935–2941, 2006.

Prata, A.: Satellite Detection of Hazardous Volcanic Clouds and the Risk to Global Air Traffic, Nat. Hazards, 51, 303–324, https://doi.org/10.1007/s11069-008-9273-z, 2009.

Prata, A. and Barton, I.: Detection System for Use in an Aircraft, Australian Patent No PJ9518, European Patent No 91907594.5, US Patent, No. 5, 602, 1993.

Prata, A. and Bernardo, C.: Retrieval of Volcanic Ash Particle Size, Mass and Optical Depth from a Ground-based Thermal Infrared Camera, J. Volcanol. Geothermal Res., 182, 91–107, 2009.

Prata, A., Bernardo, C., Simmons, M., and Young, W.: Ground-based Detection of Volcanic Ash and Sulphur Dioxide, Proc. of the 2nd International Conference on Volcanic Ash and Aviation Safety, OFCM (Washington DC), Alexandria, Virginia, USA., 21–24, 2004.

Prata, A., Bernardo, C., Moriano, D., Thomas, H., and Ahonen, P.: Thermal imaging cameras: Technical description and applications in volcanology, Journal of Volcanology and Geothermal Research, in revision, 2014.

Pugnaghi, S., Teggi, S., Corradini, S., Buongiorno, M., Merucci, L., and Bogliolo, M.: Estimation of SO2 Abundance in the Eruption Plume of Mt Etna Using Two MIVIS Thermal Infrared Channels: A Case Study from the Sicily-1997 Campaign, Bull. Volcanol., 64, 328–337, https://doi.org/10.1007/s00445-002-0211-8, 2002.

Realmuto, V. J., Hon, K., Kahle, A. B., Abbott, E. A., and Pieri, D. C.: Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii, Bull. Volcanol., 55, 33–44, 1992.

Rothman, L. L., Barbe, S. A., Chris Benner, D., Brown, L. R., Camy-Peyret, C., Carleer, M. R., Chance, K., Clerbaux, C., Dana, V., Devi, V. M., Fayt, A., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Jucks, K. W., Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Nemtchinov, V., Newnham, D. A., Perrin, A., Rinsland, C. P., Schroeder, J., Smith, K. M., Smith, M. A. H., Tang, K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino, K.: The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates of 2001, J. Quant. Spec. Rad. Trans., 82, 1–4, 2003.

Sawyer, G. M. and Burton, M. R.: Effects of a volcanic plume on thermal imaging data, Geophys. Res. Lett., 33, L14311, https://doi.org/10.1029/2005GL0253202006, 2006.

Shaw, J., Nugent, P., Thurairajah, B., and Mizutani, K.: Radiometric Cloud Imaging with an Uncooled Microbolometer Thermal Infrared Camera, Optics Express, 13, 5807–5817, 2005.

Smith, S. and Toumi, R.: Direct observation of cloud forcing by ground-based thermal imaging, Geophys. Res. Lett., 35, L07814, https://doi.org/10.1029/2008GL033201, 2008.

Stremme, W., Krueger, A., Harig, R., and Grutter, M.: Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios, Atmos. Meas. Tech., 5, 275–288, https://doi.org/10.5194/amt-5-275-2012, 2012.

Strow, L. L., Hannon, S. E., Souza-Machado, D., Motteler, H. E., Tobin, An overview of the AIRS radiative transfer model, Geoscience and Remote Sensing, IEEE Trans., 41, 303–313, 2003.

Teggi, S., Bogliolo, M., Buongiorno, M., Pugnaghi, S., and Sterni, A.: Evaluation of SO2 emission from Mount Etna using diurnal and nocturnal multispectral IR and visible imaging spectrometer thermal IR remote sensing images and radiative transfer models, J. Geophys. Res. Sol. Earth, 104, 20069–20079, 1999.

Wright, R., Flynn, L. P., Garbeil, H., Harris, A. J., and Pilger, E.: MODVOLC: near-real-time thermal monitoring of global volcanism, J. Volcanol. Geothermal Res., 135, 29–49, 2004.