Retinoic acid in the development, regeneration and maintenance of the nervous system

Nature Reviews Neuroscience - Tập 8 Số 10 - Trang 755-765 - 2007
Malcolm Maden1
1MRC Centre for Developmental Neurobiology, fourth floor New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blomhoff, R. & Blomhoff, H. K. Overview of retinoid metabolism and function. J. Neurobiol. 66, 606–630 (2006).

Kawaguchi, R. et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315, 820–825 (2007).

Sandell, L. L. et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev. 21, 1113–1124 (2007).

Budhu, A. S. & Noy, N. Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol. Cell Biol. 22, 2632–2641 (2002).

Bastien, J. & Rochette-Egly, C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328, 1–16 (2004).

Balmer, J. E. & Blomhoff, R. Gene expression regulation by retinoic acid. J. Lipid Res. 43, 1773–1808 (2002).

Liu, J.-P., Laufer, E. & Jessell, T. M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by Fgfs, Gdf11, and retinoids. Neuron 32, 997–1012 (2001). This study shows the relationship between three signalling molecules and details how they co-operate in the organization of the anteroposterior axis of the spinal cord.

Maden, M. Retinoid signalling in the development of the central nervous system. Nature Rev. Neurosci. 3, 843–853 (2002).

Melton, K. R., Iulianella, A. & Trainor, P. A. Gene expression and regulation of hindbrain and spinal cord development. Front. Biosci. 9, 117–138 (2004).

Maden, M., Gale, E., Kostetskii, I. & Zile, M. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417–426 (1996). This was the first study to show that RA is involved in the development of the posterior hindbrain and that in its absence this part of the nervous system does not develop.

Wilson, L., Gale, E., Chambers, D. & Maden, M. The role of retinoic acid in the dorsoventral patterning of the spinal cord. Dev. Biol. 269, 433–446 (2004).

Reijntjes, S., Gale, E. & Maden, M. Generating gradients of retinoic acid in the chick embryo: Cyp26C1 expression and a comparative analysis of the Cyp26 enzymes. Dev. Dyn. 230, 509–517 (2004).

Glover, J. C., Renaud, J. S. & Rijli, F. M. Retinoic acid and hindbrain patterning. J. Neurobiol. 66, 705–725 (2006).

Novitch, B. G., Wichterle, H., Jessell, T. M. & Sockanathan, S. A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40, 81–95 (2003).

Wilson, L. & Maden, M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev. Biol. 282, 1–13 (2005).

Diez del Corral, R. & Storey, K. G. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 26, 857–869 (2004).

Andrews, P. A. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103, 28–293 (1984).

Edwards, M. K. S. & McBurney, M. W. The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev. Biol. 98, 187–191 (1983).

Jones-Villeneuve, E. M. V., McBurney, M. W., Rogers, K. A. & Kalnins, V. I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J. Cell Biol. 94, 253–262 (1982).

Kuff, E. I. & Fewell, J. W. Induction of neural-like cells and acetylcholinesterase activity in cultures of F9 teratocarcinoma cells treated with retinoic acid and dibutyryl cyclic adenosine monophosphate. Dev. Biol. 77, 103–115 (1980).

Sidell, N., Altman, A., Haussler, M. R. & Seeger, R. C. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res. 148, 21–30 (1983).

Thompson, S. et al. Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J. Cell Sci. 72, 37–64 (1984).

Maden, M. Role and distribution of retinoic acid during CNS development. Int. Rev. Cytol. 209, 1–77 (2001).

Mizuno, K. et al. SHP-1 is induced in neuronal differentiation of P19 embryonic carcinoma cells. FEBS Lett. 417, 6–12 (1997).

Verani, R. et al. Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J. Neurochem. 100, 242–250 (2007).

Dziewczapolski, G., Lie, D. C., Ray, J., Gage, F. H. & Shults, C. W. Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp. Neurol. 183, 653–664 (2003).

Bosch, M. et al. Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp. Neurol. 190, 42–58 (2004).

Li, Q. et al. Lin−CD34− bone marrow cells from adult mice can differentiate into neural-like cells. Neurosci. Lett. 408, 51–56 (2006).

Ikeda, R. et al. Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiol. Dis. 20, 38–48 (2005). This study provides an example of an application of RA-differentiated stem cells.

Nonaka, M. et al. Intraventricular transplantation of embryonic stem cell-derived neural stem cells in intracerebral hemorrhage rats. Neurol. Res. 26, 265–272 (2004).

Mimura, T., Dezawa, M., Kanno, H., Sawada, H. & Yamamoto, I. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J. Neurosurg. 101, 806–812 (2004).

Chiba, S., Iwasaki, Y., Sekino, H. & Suzuki, N. Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant. 12, 457–468 (2003).

Chiba, S. et al. Anatomical and functional recovery by embryonic stem cell-derived neural tissue of a mouse model of brain damage. J. Neurol. Sci. 219, 107–117 (2004).

Guidato, S., Prin, F. & Guthrie, S. Somatic motoneurone specification in the hindbrain: the influence of somite-derived signals, retinoic acid and Hoxa3. Development 130, 2981–2996 (2003).

Swindell, E. C. et al. Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev. Biol. 216, 282–296 (1999).

Blentic, A., Gale, E. & Maden, M. Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev. Dyn. 227, 114–127 (2003).

Niederreither, K., McCaffery, P., Drager, U. C., Chambon, P. & Dolle, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

Maden, M., Sonneveld, E., van der Saag, P. T. & Gale, E. The distribution of endogenous retinoic acid in the chick embryo: implications for developmental mechanisms. Development 125, 4133–4144 (1998).

Grapin-Botton, A., Bonnon, M.-A., Sieweke, M. & Le Douarin, N. M. Defined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain. Development 125, 1173–1181 (1998).

Guidato, S., Barrett, C. & Guthrie, S. Patterning of motor neurons by retinoic acid in the chick embryo hindbrain in vitro. Mol. Cell Neurosci. 23, 81–95 (2003).

Maden, M., Gale, E. & Zile, M. The role of vitamin A in the development of the central nervous system. J. Nutr. 128, 471S–475S (1998).

Ensini, M., Tsuchida, T., Betling, H.-G. & Jessell, T. The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development 125, 969–982 (1998).

Ji, S. J. et al. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb-innervating spinal motor neurons. Dev. Biol. 297, 249–261 (2006).

Zhao, D. et al. Molecular identification of a major retinoic acid-synthesising enzyme, a retinaldehyde-specific dehydrogenase. Eur. J. Biochem. 240, 15–22 (1996).

Sockanathan, S. & Jessell, T. M. Motor neuron-derived retinoid signalling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514 (1998). This paper reveals the role of RA in the generation of presumptive motor neurons in the spinal cord and in the further differentiation of this cell type.

Vermot, J. et al. Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons. Development 132, 1611–1621 (2005).

Sockanathan, S., Perlmann, T. & Jessell, T. M. Retinoid receptor signaling in postmitotic motor neurons regulates rostrocaudal positional identity and axonal projection pattern. Neuron 40, 97–111 (2003).

Zhelyaznik, N., Schrage, K., McCaffery, P. & Mey, J. Activation of retinoic acid signalling after sciatic nerve injury: up-regulation of cellular retinoid binding proteins. Eur. J. Neurosci. 18, 1033–1040 (2003).

So, P. L. et al. Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev. Biol. 298, 167–175 (2006).

Corcoran, J. P., So, P. L. & Maden, M. Disruption of the retinoid signalling pathway causes a deposition of amyloid β in the adult rat brain. Eur. J. Neurosci. 20, 896–902 (2004). This study shows that, in the absence of RA, the cellular characteristics of Alzheimer's disease appear in rats.

Corcoran, J. & Maden, M. Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nature Neurosci. 2, 307–308 (1999).

Zhelyaznik, N. & Mey, J. Regulation of retinoic acid receptors α, β and retinoid X receptor α after sciatic nerve injury. Neuroscience 141, 1761–1774 (2006).

Mey, J., Schrage, K., Wessels, I. & Vollpracht-Crijns, I. Effects of inflammatory cytokines IL-1β, IL-6, and TNFα on the intracellular localization of retinoid receptors in Schwann cells. Glia 55, 152–164 (2007).

Corcoran, J., Shroot, B., Pizzey, J. & Maden, M. The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J. Cell Sci. 113, 2567–2574 (2000).

Corcoran, J. et al. Retinoic acid receptor β2 and neurite outgrowth in the adult mouse spinal cord in vitro. J. Cell Sci. 115, 3779–3786 (2002).

Wong, L. F. et al. Retinoic acid receptor β2 promotes functional regeneration of sensory axons in the spinal cord. Nature Neurosci. 9, 243–250 (2006). This study provided the first in vivo demonstration that upregulating a RA receptor leads to the induction of nerve regeneration and functional recovery.

Akazawa, C. et al. The upregulated expression of sonic hedgehog in motor neurons after rat facial nerve axotomy. J. Neurosci. 24, 7923–7930 (2004).

Mey, J. Retinoic acid as a regulator of cytokine signaling after nerve injury. Z. Naturforsch. [C ] 56, 163–176 (2001).

Mey, J. New therapeutic target for CNS injury? The role of retinoic acid signaling after nerve lesions. J. Neurobiol. 66, 757–779 (2006).

Taha, M. O. et al. Effect of retinoic acid on tibial nerve regeneration after anastomosis in rats: histological and functional analyses. Transplant. Proc. 36, 404–408 (2004).

Arrieta, O. et al. Retinoic acid increases tissue and plasma contents of nerve growth factor and prevents neuropathy in diabetic mice. Eur. J. Clin. Invest. 35, 201–207 (2005).

Kern, J. et al. Characterization of retinaldehyde dehydrogenase-2 induction in NG2-positive glia after spinal cord contusion injury. Int. J. Dev. Neurosci. 25, 7–16 (2007).

Mey, J. et al. Retinoic acid synthesis by a population of NG2-positive cells in the injured spinal cord. Eur. J. Neurosci. 21, 1555–1568 (2005).

Charytoniuk, D. A. et al. Distribution of bone morphogenetic protein and bone morphogenetic protein receptor transcripts in the rodent nervous system and up-regulation of bone morphogenetic protein receptor type II in hippocampal dentate gyrus in a rat model of global cerebral ischemia. Neuroscience 100, 33–43 (2000).

Yip, P. K. et al. Lentiviral vector expressing retinoic acid receptor β2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum. Mol. Genet. 15, 3107–3118 (2006).

Krezel, W., Kastner, P. & Chambon, P. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89, 1291–1300 (1999).

Wietrzych, M. et al. Working memory deficits in retinoid X receptor γ-deficient mice. Learn. Mem. 12, 318–326 (2005).

Zetterstrom, R. H. et al. Role of retinoids in the CNS: differential expression of retinoid binding protein and receptors and evidence for presence of retinoic acid. Eur. J. Neurosci. 11, 407–416 (1999).

Thompson, H. G., Maynard, T. M., Shatzmiller, R. A. & LaMantia, A. S. Retinoic acid signaling at sites of plasticity in the mature central nervous system. J. Comp. Neurol. 452, 228–241 (2002). This study reveals the sites in the adult brain where RA signalling continues to be activated.

Asson-Batres, M. A. & Smith, W. B. Localization of retinaldehyde dehydrogenases and retinoid binding proteins to sustentacular cells, glia, Bowman's gland cells, and stroma: potential sites of retinoic acid synthesis in the postnatal rat olfactory organ. J. Comp. Neurol. 496, 149–171 (2006).

Gustafson, A.-L., Eriksson, U. & Dencker, L. CRBPI and CRABPI localisation during olfactory nerve development. Dev. Brain Res. 114, 121–126 (1999).

Kurlandsky, S. B., Gamble, M. V., Ramakrishnan, R. & Blaner, W. S. Plasma delivery of retinoic acid to tissues in the rat. J. Biol. Chem. 270, 17850–17857 (1995).

Le, D. F., Debruyne, D., Albessard, F., Barre, L. & Defer, G. L. Pharmacokinetics of all-trans retinoic acid, 13-cis retinoic acid, and fenretinide in plasma and brain of rat. Drug Metab. Dispos. 28, 205–208 (2000).

Werner, E. A. & DeLuca, H. F. Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am. J. Physiol. Endocrinol. Metab. 282, E672–E678 (2002).

Connor, M. J. & Sidell, N. Retinoic acid synthesis in normal and Alzheimer diseased brain and human neural cells. Mol. Chem. Neuropathol. 30, 239–252 (1997).

Dev, S., Adler, A. J. & Edwards, R. B. Adult rabbit brain synthesizes retinoic acid. Brain Res. 632, 325–328 (1993).

Kane, M. A., Chen, N., Sparks, S. & Napoli, J. L. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem. J. 388, 363–369 (2005).

Wagner, E., Luo, T. & Drager, U. C. Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb. Cortex 12, 1244–1253 (2002).

McCaffery, P. & Drager, U. C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl Acad. Sci. USA 91, 7772–7776 (1994). This study found that high levels of RA synthesis are seen specifically in dopaminergic neurons in the adult brain.

Smith, D., Wagner, E., Koul, O., McCaffery, P. & Drager, U. C. Retinoic acid synthesis for the developing telencephalon. Cereb. Cortex 11, 894–905 (2001).

Luo, T., Wagner, E., Grun, F. & Drager, U. C. Retinoic acid signaling in the brain marks formation of optic projections, maturation of the dorsal telencephalon, and function of limbic sites. J. Comp. Neurol. 470, 297–316 (2004).

McCaffery, P., Zhang, J. & Crandall, J. E. Retinoic acid signaling and function in the adult hippocampus. J. Neurobiol. 66, 780–791 (2006).

Misner, D. L. et al. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc. Natl Acad. Sci. USA 98, 11714–11719 (2001).

Sakai, Y., Crandall, J. E., Brodsky, J. & McCaffery, P. 13-cis retinoic acid (accutane) suppresses hippocampal cell survival in mice. Ann. NY Acad. Sci. 1021, 436–440 (2004).

Denisenko-Nehrbass, N. I., Jarvis, E., Scharff, C., Nottebohm, F. & Mello, C. V. Site-specific retinoic acid production in the brain of adult songbirds. Neuron 27, 359–370 (2000).

Denisenko-Nehrbass, N. I. & Mello, C. V. Molecular targets of disulfiram action on song maturation in zebra finches. Brain Res. Mol. Brain Res. 87, 246–250 (2001).

Wolbach, S. B. & Howe, P. R. Tissue changes following deprivation of fat soluble A vitamin. J. Exp. Med. 42, 753–777 (1925).

Asson-Batres, M. A., Zeng, M. S., Savchenko, V., Aderoju, A. & McKanna, J. Vitamin A deficiency leads to increased cell proliferation in olfactory epithelium of mature rats. J. Neurobiol. 54, 539–554 (2003).

Hagglund, M., Berghard, A., Strotmann, J. & Bohm, S. Retinoic acid receptor-dependent survival of olfactory sensory neurons in postnatal and adult mice. J. Neurosci. 26, 3281–3291 (2006).

Yee, K. K. & Rawson, N. E. Retinoic acid enhances the rate of olfactory recovery after olfactory nerve transection. Brain Res. Dev. Brain Res. 124, 129–132 (2000).

Etchamendy, N. et al. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav. Brain Res. 145, 37–49 (2003).

Cocco, S. et al. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 115, 475–482 (2002). This paper shows that RA is involved in learning and memory in the adult brain.

Chiang, M.-Y. et al. An essential role for retinoid receptors RARβ and RXRγ in long-term potentiation and depression. Neuron 21, 1353–1361 (1998). This was the first study to reveal a role for RA signalling in hippocampal function in adults.

Crandall, J. et al. 13-cis-retinoic acid suppresses hippocampal cell division and hippocampal-dependent learning in mice. Proc. Natl Acad. Sci. USA 101, 5111–5116 (2004).

Iniguez, M. A. et al. Characterization of the promoter region and flanking sequences of the neuron-specific gene RC3 (neurogranin). Brain Res. Mol. Brain Res. 27, 205–214 (1994).

Wang, Y.-Z. & Christakos, S. Retinoic acid regulates the expression of the calcium binding protein, calbindin-D28K. Mol. Endocrinol. 9, 1510–1521 (1995).

Hernandez-Pinto, A. M., Puebla-Jimenez, L. & Rilla-Ferreiro, E. A vitamin A-free diet results in impairment of the rat hippocampal somatostatinergic system. Neuroscience 141, 851–861 (2006).

Berse, B. & Blusztajn, J. K. Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor α, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line. J. Biol. Chem. 270, 22101–22104 (1995).

Shudo, K., Kagechika, H., Yamazaki, N., Igarashi, M. & Tateda, C. A synthetic retinoid Am80 (tamibarotene) rescues the memory deficit caused by scopolamine in a passive avoidance paradigm. Biol. Pharm. Bull. 27, 1887–1889 (2004).

Samad, T. A., Krezel, W., Chambon, P. & Borrelli, E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor–retinoid X receptor family. Proc. Natl Acad. Sci. USA 94, 14349–14354 (1997).

Krezel, W. et al. Impaired locomotion and dopamine signalling in retinoid receptor mutant mice. Science 279, 863–867 (1998). This paper shows that RA signalling is involved in striatal function in the adult brain.

Zetterstrom, R. H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

Krauss, J. K., Mohandjer, M., Wakhloo, A. K. & Mundinger, F. Dystonia and akinesia due to pallidoputaminal lesions after disulphiram treatment. Mov. Dis. 6, 166–170 (1991).

Laplane, D., Attal, N., Sauron, B., de Billy, A. & Dubois, B. Lesions of basal ganglia due to disulphiram neurotoxicity. J. Neurol. Neurosurg. Psychiatr. 55, 925–929 (1992).

Deltour, L., Ang, H. L. & Duester, G. Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J. 10, 1050–1057 (1996).

Wohl, C. A. & Weiss, S. Retinoic acid enhances neural proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J. Neurobiol. 37, 281–290 (1998).

Takahashi, J., Palmer, T. D. & Gage, F. H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–81 (1999).

Wang, T. W., Zhang, H. & Parent, J. M. Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone–olfactory bulb pathway. Development 132, 2721–2732 (2005). This study reveals the effects of RA in promoting nerve cell production from neural stem cells.

Giardino, L., Bettelli, C. & Calza, L. In vivo regulation of precursor cells in the subventricular zone of adult rat brain by thyroid hormone and retinoids. Neurosci. Lett. 295, 17–20 (2000).

Corcoran, J., So, P.-L. & Maden, M. Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J. Cell Sci. 115, 4735–4741 (2002).

Husson, M. et al. Triiodothyronine administration reverses vitamin A deficiency-related hypo-expression of retinoic acid and triiodothyronine nuclear receptors and of neurogranin in rat brain. Br. J. Nutr. 90, 191–198 (2003).

Enderlin, V. et al. Age-related decreases in mRNA for nuclear receptors and target genes are reversed by retinoic acid treatment. Neurosci. Lett. 229, 125–129 (1997). This was the first study to show a decline in RA receptor expression during ageing.

Hart, E. B., Miller, W. S. & McCollum, E. V. Further studies on the nutritive deficiencies of wheat and grain mixtures and the pathological conditions produced in swine by their use. J. Biol. Chem. 25, 239–260 (1916).

Alberle, S. B. D. Neurological disturbances in rats reared on diets deficient in vitamin A. J. Nutr. 7, 445–461 (1934).

Mellanby, E. Diseases produced and prevented by certain food constituents. J. Am. Med. Assoc. 96, 325–331 (1931).

Hughes, J. S., Lienhardt, H. F. & Aubel, C. E. Nerve degeneration resulting from a vitaminosis A. J. Nutr. 2, 183–186 (1929).

Irving, J. T. & Richards, M. B. Early lesions of vitamin A deficiency. J. Physiol. 94, 307–321 (1938).

Malaspina, A., Kaushik, N. & De Belleroche, J. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J. Neurochem. 77, 132–145 (2001).

Jiang, Y. M. et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann. Neurol. 57, 236–251 (2005).

Molina, J. A. et al. Serum levels of β-carotene, α-carotene, and vitamin A in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 99, 315–317 (1999).

Saga, Y. et al. Impaired extrapyramidal function caused by the targeted disruption of retinoid X receptor RXRγ1 isoform. Genes Cells 4, 219–228 (1999).

Husson, M. et al. Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol. Dis. 23, 1–10 (2006). This study shows how RA could be used in the adult brain to return the RA status in vitamin-A-deprived rats to normal.

Goodman, A. B. Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J. Cell Physiol. 209, 598–603 (2006).

Maury, C. P. J. & Teppo, A.-M. Immunodetection of protein composition in cerebral amyloid extracts in Alzheimer's disease: enrichment of retinol-binding protein. J. Neurol. Sci. 80, 221–228 (1987).

Culvenor, J. G. et al. Presenilin 2 expression in neuronal cells: induction during differentiation of embryonic carcinoma cells. Exp. Cell Res. 255, 192–206 (2000).

Hong, C. S. et al. Contrasting role of presenilin-1 and presenilin-2 in neuronal differentiation in vitro. J. Neurosci. 19, 637–643 (1999).

Lahiri, D. K. & Nall, C. Promoter activity of the gene encoding the β-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Brain Res. Mol. Brain Res. 32, 233–240 (1995).

Yang, Y., Quitschke, W. W. & Brewer, G. J. Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Mol. Brain Res. 60, 40–49 (1998).

Pan, J. B., Monteggia, L. M. & Giordano, T. Altered levels and splicing of the amyloid precursor protein in the adult rat hippocampus after treatment with DMSO or retinoic acid. Brain Res. Mol. Brain Res. 18, 259–266 (1993).

Fahrenholz, F. & Postina, R. α-secretase activation — an approach to Alzheimer's disease therapy. Neurodegener. Dis. 3, 255–261 (2006).

Prinzen, C., Muller, U., Endres, K., Fahrenholz, F. & Postina, R. Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J. 19, 1522–1524 (2005).

Satoh, J. & Kuroda, Y. Amyloid precursor protein β-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors. Neuropathology 20, 289–296 (2000).

Gao, Y. & Pimplikar, S. W. The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc. Natl Acad. Sci. USA 98, 14979–14984 (2001).

Yoshikawa, K., Aizawa, T. & Hayashi, Y. Degeneration in vitro of post-mitotic neurons overexpressing the Alzheimer amyloid protein precursor. Nature 359, 64–67 (1992).

Ono, K. et al. Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp. Neurol. 189, 380–392 (2004).

Sahin, M., Karauzum, S. B., Perry, G., Smith, M. A. & Aliciguzel, Y. Retinoic acid isomers protect hippocampal neurons from amyloid-β induced neurodegeneration. Neurotox. Res. 7, 243–250 (2005). This study provides an example of the protective effect that RA has on amyloid-β-induced cell death.

Whitehouse, P. J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

Pedersen, W. A., Kloczewiak, M. A. & Blusztajn, J. K. Amyloid-β protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc. Natl Acad. Sci. USA 93, 8068–8071 (1996).

Coleman, B. A. & Taylor, P. Regulation of acetylcholinesterase expression during neuronal differentiation. J. Biol. Chem. 271, 4410–4416 (1996).

Hill, D. R. & Robertson, K. A. Characterisation of the colinergic neuronal differentiation of the human neuroblastoma cell line LAN-5 after treatment with retinoic acid. Dev. Brain Res. 102, 53–67 (1997).

Parnas, D. & Linial, M. Cholinergic properties of neurons differentiated from an embryonal carcinoma cell-line (P19). Int. J. Dev. Neurosci. 13, 767–781 (1995).

Pedersen, W. A., Berse, B., Schuler, U., Wainer, B. H. & Blusztajn, J. K. All-trans- and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: evidence that the effects are mediated by activation of retinoic acid receptor-α. J. Neurochem. 65, 50–58 (1995).

Sidell, N., Lucas, C. A. & Kreutzberg, G. W. Regulation of acetylcholinesterase acvitity by retinoic acid in a human neuroblastoma cell line. Exp. Cell Res. 155, 305–309 (1984).

Sharpe, C. & Goldstone, K. Retinoid signalling acts during the gastrula stages to promote primary neurogenesis. Int. J. Dev. Biol. 44, 463–470 (2000).

Blumberg, B. et al. An essential role for retinoid signalling in anteroposterior neural patterning. Development 124, 373–379 (1997). This study shows how normal, upregulated and downregulated RA signalling affects on the expression of various genes in the anteroposterior axis of the developing CNS.

Franco, P. G., Paganelli, A. R., Lopez, S. L. & Carrasco, A. E. Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 126, 4257–4265 (1999).

Papalopulu, N. & Kintner, C. A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, 3409–3418 (1996).

Sharpe, C. R. & Goldstone, K. Retinoid receptors promote primary neurogenesis in Xenopus. Development 124, 515–523 (1997).