Retinal perception and ecological significance of color vision in insects

Current Opinion in Insect Science - Tập 24 - Trang 75-83 - 2017
Fleur Lebhardt1, Claude Desplan1
1Department of Biology, New York University, NY 10003, USA

Tài liệu tham khảo

Porter, 2012, Shedding new light on opsin evolution, Proc R Soc Biol Sci Ser B, 279, 3, 10.1098/rspb.2011.1819 Feuda, 2016, Conservation, duplication, and divergence of five opsin genes in insect evolution, Genome Biol Evol, 8, 579, 10.1093/gbe/evw015 Briscoe, 2008, Reconstructing the ancestral butterfly eye: focus on the opsins, J Exp Biol, 211, 1805, 10.1242/jeb.013045 Briscoe, 2001, The evolution of color vision in insects, Annu Rev Entomol, 46, 471, 10.1146/annurev.ento.46.1.471 Yuan, 2010, Contrasting modes of evolution of the visual pigments in Heliconius butterflies, Mol Biol Evol, 27, 2392, 10.1093/molbev/msq124 Peitsch, 1992, The spectral input systems of hymenopteran insects and their receptor-based color-vision, J Comp Physiol A, 170, 23, 10.1007/BF00190398 Futahashi, 2015, Extraordinary diversity of visual opsin genes in dragonflies, Proc Natl Acad Sci U S A, 112, E1247, 10.1073/pnas.1424670112 Spaethe, 2004, Early duplication and functional diversification of the opsin gene family in insects, Mol Biol Evol, 21, 1583, 10.1093/molbev/msh162 Lord, 2016, A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae), BMC Evol Biol, 16, 107, 10.1186/s12862-016-0674-4 Sharkey, 2017, Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles, Sci Rep, 7 Koyanagi, 2008, Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders, J Mol Evol, 66, 130, 10.1007/s00239-008-9065-9 Zopf, 2013, Spectral sensitivity of the ctenid spider Cupiennius salei, J Exp Biol, 216, 4103, 10.1242/jeb.086256 Zurek, 2015, Spectral filtering enables trichromatic vision in colorful jumping spiders, Curr Biol, 25, R403, 10.1016/j.cub.2015.03.033 Lunau, 2014, Visual ecology of flies with particular reference to colour vision and colour preferences, J Comp Physiol A, 200, 497, 10.1007/s00359-014-0895-1 Kelber, 2003, Animal colour vision—behavioural tests and physiological concepts, Biol Rev Camb Philos Soc, 78, 81, 10.1017/S1464793102005985 Hempel de Ibarra, 2014, Mechanisms, functions and ecology of colour vision in the honeybee, J Comp Physiol A, 200, 411, 10.1007/s00359-014-0915-1 Arikawa, 2003, Spectral organization of the eye of a butterfly, Papilio, J Comp Physiol A Sens Neural Behav Physiol, 189, 791, 10.1007/s00359-003-0454-7 Suvorov, 2017, Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata, Mol Ecol, 26, 1306, 10.1111/mec.13884 Frentiu, 2007, Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies, Mol Biol Evol, 24, 2016, 10.1093/molbev/msm132 Tierney, 2015, Opsin transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches, R Soc Open Sci, 2, 140386, 10.1098/rsos.140386 Sinakevitch, 2003, Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa, J Comp Neurol, 467, 150, 10.1002/cne.10925 Wernet, 2015, The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic, Trends Genet, 31, 316, 10.1016/j.tig.2015.04.006 Meinertzhagen, 1976, The organization of perpendicular fibre pathways in the insect optic lobe, Philos Trans R Soc Lond B Biol Sci, 274, 555, 10.1098/rstb.1976.0064 Morante, 2008, The color-vision circuit in the medulla of Drosophila, Curr Biol, 18, 553, 10.1016/j.cub.2008.02.075 Schnaitmann, 2013, Color discrimination with broadband photoreceptors, Curr Biol, 23, 2375, 10.1016/j.cub.2013.10.037 Wardill, 2012, Multiple spectral inputs improve motion discrimination in the Drosophila visual system, Science, 336, 925, 10.1126/science.1215317 Paulk, 2009, Visual processing in the central bee brain, J Neurosci, 29, 9987, 10.1523/JNEUROSCI.1325-09.2009 Vogt, 2016, Direct neural pathways convey distinct visual information to Drosophila mushroom bodies, Elife, 5, 10.7554/eLife.14009 Lynch, 2000, The probability of duplicate gene preservation by subfunctionalization, Genetics, 154, 459, 10.1093/genetics/154.1.459 Briscoe, 2001, Functional diversification of lepidopteran opsins following gene duplication, Mol Biol Evol, 18, 2270, 10.1093/oxfordjournals.molbev.a003773 Force, 1999, Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 151, 1531, 10.1093/genetics/151.4.1531 Seki, 1998, Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta, Comp Biochem Phys B, 119B, 53, 10.1016/S0305-0491(97)00322-2 Yokoyama, 2000, Molecular evolution of vertebrate visual pigments, Prog Retin Eye Res, 19, 385, 10.1016/S1350-9462(00)00002-1 Chang, 1995, Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation, Mol Phylogenet Evol, 4, 31, 10.1006/mpev.1995.1004 Arikawa, 2003, Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus, J Neurosci, 23, 4527, 10.1523/JNEUROSCI.23-11-04527.2003 Hamdorf, 1992, Ultra-violet sensitizing pigment in blowfly photoreceptors R1-6; probable nature and binding sites, J Comp Physiol A, 171, 601, 10.1007/BF00194108 Stavenga, 2004, Visual acuity of fly photoreceptors in natural conditions—dependence on UV sensitizing pigment and light-controlling pupil, J Exp Biol, 207, 1703, 10.1242/jeb.00949 Kirschfeld, 1977, Photostable pigments within the membrane of photoreceptors and their possible role, Biophys Struct Mech, 3, 191, 10.1007/BF00535818 Enright, 2015, Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A 1 into A 2, Curr Biol, 25, 3048, 10.1016/j.cub.2015.10.018 Stavenga, 2017, Photoreceptor spectral tuning by colorful, multilayered facet lenses in long-legged fly eyes (Dolichopodidae), J Comp Physiol A, 203, 23, 10.1007/s00359-016-1131-y Bernard, 1968, Interference filters in the corneas of Diptera, Invest Ophthalmol, 7, 416 Stavenga, 2002, Colour in the eyes of insects, J Comp Physiol A, 188, 337, 10.1007/s00359-002-0307-9 Lunau, 1995, Vision through colored eyes, Naturwissenschaften, 82, 432, 10.1007/BF01133678 Arikawa, 1999, An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio, Vis Res, 39, 1, 10.1016/S0042-6989(98)00070-4 Hardie, 1985, Functional organization of the fly retina, Prog Sens Physiol, 5, 1, 10.1007/978-3-642-70408-6_1 Kirschfeld, 1977, Evidence for a sensitising pigment in fly photoreceptors, Nature, 269, 386, 10.1038/269386a0 Toomey, 2015, A complex carotenoid palette tunes avian colour vision, J R Soc Interface, 12, 20150563, 10.1098/rsif.2015.0563 McCulloch, 2016, Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor, J Exp Biol, 219, 2377, 10.1242/jeb.136523 Ogawa, 2013, Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate, J Exp Biol, 216, 1916, 10.1242/jeb.083485 Niven, 2008, Energy limitation as a selective pressure on the evolution of sensory systems, J Exp Biol, 211, 1792, 10.1242/jeb.017574 Niven, 2007, Fly photoreceptors demonstrate energy-information trade-offs in neural coding, PLoS Biol, 5, e116, 10.1371/journal.pbio.0050116 Moran, 2014, Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism, PLoS ONE, 9, e107877, 10.1371/journal.pone.0107877 Moran, 2015, The energetic cost of vision and the evolution of eyeless Mexican cavefish, Sci Adv, 1, e1500363, 10.1126/sciadv.1500363 Friedrich, 2013, Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics, Integr Comp Biol, 53, 50, 10.1093/icb/ict058 Friedrich, 2011, Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave, J Exp Biol, 214, 3532, 10.1242/jeb.060368 Packard, 1888, The Cave Fauna of North America: With Remarks on the Anatomy of the Brain and Origin of the Blind Species, Mem Natl Acad Sci, 4, 1 Cronin, 2016, Photoreception and vision in the ultraviolet, J Exp Biol, 219, 2790, 10.1242/jeb.128769 Manwaring, 2016, A study of common scorpionfly (Mecoptera: Panorpidae) visual systems reveals the expression of a single opsin, Org Divers Evol, 16, 201, 10.1007/s13127-015-0241-7 Longden, 2016, Central brain circuitry for color-vision-modulated behaviors, Curr Biol, 26, R981, 10.1016/j.cub.2016.07.071 Kelber, 2016, Colour in the eye of the beholder: receptor sensitivities and neural circuits underlying colour opponency and colour perception, Curr Opin Neurobiol, 41, 106, 10.1016/j.conb.2016.09.007 Kawasaki, 2015, Difference in dynamic properties of photoreceptors in a butterfly, Papilio xuthus: possible segregation of motion and color processing, J Comp Physiol A, 201, 1115, 10.1007/s00359-015-1039-y Yang, 1991, Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau, J Comp Physiol A, 169, 663, 10.1007/BF00194895 Yang, 1996, Spectral responses and chromatic processing in the dragonfly lamina, J Comp Physiol A Sens Neural Behav Physiol, 178, 543, 10.1007/BF00190184 Chen, 2013, Diversity of the photoreceptors and spectral opponency in the compound eye of the Golden Birdwing, Troides aeacus formosanus, PLOS ONE, 8, e62240, 10.1371/journal.pone.0062240 Buschbeck, 2003, The unusual visual system of the Strepsiptera: external eye and neuropils, J Comp Physiol A, 189, 617, 10.1007/s00359-003-0443-x James, 2016, The unusual eyes of Xenos peckii (Strepsiptera: Xenidae) have green- and UV-sensitive photoreceptors, J Exp Biol, 219, 3866, 10.1242/jeb.148361 Chin, 2014, Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum, J Comp Neurol, 522, 3795, 10.1002/cne.23622 Burkhardt DdlM, 1972, Electrophysiological studies on the eyes of Diptera, Mecoptera and Hymenoptera, 147 Meinertzhagen, 1983, The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rubicundulum, J Comp Physiol, 151, 295, 10.1007/BF00623906 Frentiu, 2015, Opsin clines in butterflies suggest novel roles for insect photopigments, Mol Biol Evol, 32, 368, 10.1093/molbev/msu304 Thoen, 2014, A different form of color vision in mantis shrimp, Science, 343, 411, 10.1126/science.1245824 Land, 1990, The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda), J Comp Physiol A, 167, 155, 10.1007/BF00188107 Chen, 2016, Extreme spectral richness in the eye of the Common Bluebottle butterfly, Graphium sarpedon, Front Ecol Evol, 4, 18, 10.3389/fevo.2016.00018 Hauser, 2014, Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?, J Exp Zool Part B, 322, 529, 10.1002/jez.b.22576 Perry, 2016, Love spots, Curr Biol, 26, R484, 10.1016/j.cub.2016.02.020 Land, 1985, Maps of the acute zones of fly eyes, J Comp Physiol A, 156, 525, 10.1007/BF00613976 Hardie, 1983, Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica), Cell Tissue Res, 233, 1, 10.1007/BF00222228 Hardie, 1981, Distribution and properties of sex-specific photoreceptors in the fly Musca domestica, J Comp Physiol, 145, 139, 10.1007/BF00605029 Perry, 2016, Molecular logic behind the three-way stochastic choices that expand butterfly colour vision, Nature, 535, 280, 10.1038/nature18616 Finkbeiner, 2017, Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato, J Exp Biol, 220, 1267, 10.1242/jeb.153593 Ogawa, 2012, Coexpression of three middle wavelength-absorbing visual pigments in sexually dimorphic photoreceptors of the butterfly Colias erate, J Comp Physiol A, 198, 857, 10.1007/s00359-012-0756-8 Awata, 2009, Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate, J Comp Physiol A, 195, 401, 10.1007/s00359-009-0418-7 Everett, 2012, Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal, BMC Evol Biol, 12, 232, 10.1186/1471-2148-12-232 Macias-Munoz, 2016, Transcriptome-wide differential gene expression in Bicyclus anynana butterflies: female vision-related genes are more plastic, Mol Biol Evol, 33, 79, 10.1093/molbev/msv197 Sprecher, 2008, Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons, Nature, 454, 533, 10.1038/nature07062 Arikawa, 1997, Random array of colour filters in the eyes of butterflies, J Exp Biol, 200, 2501, 10.1242/jeb.200.19.2501 Telles, 2015, Insect vision models under scrutiny: what bumblebees (Bombus terrestris terrestris L.) can still tell us, Sci Nat, 102, 4, 10.1007/s00114-014-1256-1 Salcedo, 2003, Molecular basis for ultraviolet vision in invertebrates, J Neurosci, 23, 10873, 10.1523/JNEUROSCI.23-34-10873.2003