Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma

Eye - Tập 26 Số 9 - Trang 1188-1193 - 2012
Ana Laura de Araújo Moura1, Ali S. Raza1, Margot Lazow1, Carlos Gustavo De Moraes2, Donald C. Hood1
1Department of Psychology, Columbia University, New York, NY, USA
2Einhorn Clinical Research Center, New York Eye and Ear, Infirmary, New York, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zangwill LM, Williams J, Berry CC, Knauer S, Weinreb RN . A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmol 2000; 107: 1309–1315.

Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA . Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 2002; 43 (7): 2213–2220.

Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR et al. Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47 (7): 2889–2895.

Sihota R, Sony P, Gupta V, Dada T, Singh R . Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 2006; 47 (5): 2006–2010.

Hood DC, Kardon RH . A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 2007; 26 (6): 688–710.

Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH . A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci 2009; 50 (9): 4254–4266.

Harwerth RS, Wheat JL, Fredette MJ, Anderson DR . Linking structure and function in glaucoma. Progress Ret Eye Res 2010; 29 (4): 249–271.

Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Medeiros FA . Structure–function relationships using the cirrus spectral domain optical coherence tomography and standard automated perimetry. J Glaucoma 2012; 21 (1): 49–54.

Wang M, Hood DC, Cho JS, Ghadiali Q, De Moraes CG, Zhang X et al. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol 2009; 127 (7): 875–881.

Tan O, Chopra V, Lu AT . Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmol 2009; 116 (12): 2305–2314.

Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH et al. Macular retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol 2011; 129 (12): 1529–1536.

Curcio CA, Messinger JD, Sloan KR, Mitra A, McGwin G, Spaide RF . Human chorioretinal layer thickness measured in macula-wide, high-resolution histologic sections. Invest Ophthalmol Vis Sci 2011; 52: 3943–3954.

Hood DC, Lin CE, Lazow MA, Locke KG, Zhang X, Birch DG . Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2009; 50 (5): 2328–2336.

Hood DC, Cho J, Raza AS, Dale EA, Wang M . Reliability of a computer-aided manual procedure for segmenting optical coherence tomography scans. Optom Vis Sci 2011; 88 (1): 113–123.

Drasdo N, Millican CL, Katholi CR, Curcio CA . The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res 2007; 47 (22): 2901–2911.