Retention of technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste
Tài liệu tham khảo
Allen, 1997, Chemical speciation studies of radionuclides by XAFS, J. Phys. IV, 7, 789
Allen, 1997, Technetium speciation in cement waste forms determined by X-ray absorption fine structure spectroscopy, Radiochim. Acta, 76, 77, 10.1524/ract.1997.76.12.77
Amersham Biosciences, 2005
Angus, 2011, The specification of cement powders for waste encapsulation processes at the Sellafield site, 48
Atkins, 1992, Cement hydrate phases: solubility at 25°C, Cement Concr. Res., 22, 241, 10.1016/0008-8846(92)90062-Z
Atkins, 1991, Solubility properties of ternary and quaternary compounds in the calcia-alumina-sulfur trioxide-water system, Cement Concr. Res., 21, 991, 10.1016/0008-8846(91)90058-P
Baur, 2004, Dissolution-precipitation behaviour of ettringite, monosulfate and calcium silicate hydrate, Cement Concr. Res., 34, 341, 10.1016/j.cemconres.2003.08.016
Berner, 1999, Concentration limits in the cement based Swiss repository for long-lived, intermediate-level radioactive wastes (LMA), PSI Bericht
Bel, 2006, Development of the Supercontainer design for deep geological disposal of high-level heat emitting radioactive waste in Belgium, Mater. Res. Soc. Symp. Proc., 932, 10.1557/PROC-932-122.1
Bonhoure, 2002, Iodine species uptake by cement and C-S-H studied by I K-edge X-ray absorption spectroscopy, Radiochim. Acta, 90, 647, 10.1524/ract.2002.90.9-11_2002.647
Brodda, 1989, Leaching of chlorine, cesium, strontium and technetium from cement-fixed intermediate level liquid waste, Mater. Res. Soc. Symp. Proc., 127, 481, 10.1557/PROC-127-481
Brown, 2018, ENDF/B-VIII.0: the 8th major release of the Nuclear Reaction Data Library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets, 148, 10.1016/j.nds.2018.02.001
Bruno, 2006, Spent nuclear fuel, Elements, 2, 343, 10.2113/gselements.2.6.343
Burke, 2005, Effects of progressive anoxia on the solubility of technetium in sediments, Environ. Sci. Technol., 39, 4109, 10.1021/es048124p
Carbol, 2012, Spent fuel as waste material, Compr. Nucl. Mater., 5, 389, 10.1016/B978-0-08-056033-5.00106-3
Childs, 2015, The nature of the volatile technetium species formed during vitrification of borosilicate glass, J. Radioanal. Nucl. Chem., 306, 417, 10.1007/s10967-015-4203-5
Cathelin
Corkhill, 2012, Technetium-99m transport and immobilisation in porous media: development of a novel nuclear imaging technique, Mater. Res. Soc. Symp. Proc., 1518, 123, 10.1557/opl.2013.111
Cui, 1996, Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material, Environ. Sci. Technol., 30, 2263, 10.1021/es950627v
Eriksen, 1993, 32
Evans, 2008, Binding mechanisms of radionuclides to cement, Cement Concr. Res., 38, 543, 10.1016/j.cemconres.2007.11.004
Felipe-Sotelo, 2014, Radial diffusion of radiocaesium and radioiodide through cementitious backfill, Phys. Chem. Earth, 70–71, 60, 10.1016/j.pce.2014.04.001
Felipe-Sotelo, 2016, Solubility constraints affecting the migration of selenium through the cementitious backfill of a geological disposal facility, J. Hazard Mater., 305, 21, 10.1016/j.jhazmat.2015.11.024
Felipe-Sotelo, 2016, The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste, J. Hazard Mater., 314, 211, 10.1016/j.jhazmat.2016.04.057
Giffaut, 2014, ANDRA thermodynamic database for performance assessment: ThermoChimie, Appl. Geochem., 49, 225, 10.1016/j.apgeochem.2014.05.007
Gilliam, 1990, Proceedings of the gulf coast hazardous substance research center second annual symposium: mechanisms and applications of solidification/stabilization of technetium in cement-based grouts, J. Hazard Mater., 24, 189, 10.1016/0304-3894(90)87009-7
Glasser, 2011, Application of inorganic cements to the conditioning and immobilisation of radioactive wastes, 67
Gonzalez, 2002, Energy response of an imaging plate exposed to standard beta sources, Appl. Radiat. Isot., 57, 875, 10.1016/S0969-8043(02)00199-9
Grambow, 2020, Retention of radionuclides on cementitious systems: main outcome of the CEBAMA project, Appl. Geochem., 10.1016/j.apgeochem.2019.104480
Grivé, 2015, Thermodynamic data selection applied to radionuclides and chemotoxic elements: an overview of the ThermoChimie-TDB, Appl. Geochem., 55, 85, 10.1016/j.apgeochem.2014.12.017
Hallam, 2011, Sorption of Tc(IV) to cementitious materials associated with a geological disposal facility for radioactive waste
Hawthorne, 2000, The crystal chemistry of sulfate minerals, Rev. Mineral., 40, 10.2138/rmg.2000.40.1
Hoch, 2012, Modelling evolution in the near field of a cementitious repository, Mineral. Mag., 76, 3055, 10.1180/minmag.2012.076.8.21
2017, 70
Isaacs, 2018, The processing and product characteristics of a blended cement grout incorporating a polycarboxylate ether superplasticiser, Adv. Cement Res., 30, 148, 10.1680/jadcr.17.00102
Jantzen, 2010, Cements in waste management, Adv. Cement Res., 22, 225, 10.1680/adcr.2010.22.4.225
Kim, 2018, Volatile species of technetium and rhenium during waste vitrification, J. Non-Cryst. Solids, 481, 41, 10.1016/j.jnoncrysol.2017.10.013
Kleykamp, 1988, The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle, Nucl. Technol., 80, 412, 10.13182/NT88-A34065
Lange, 2019
Lange, 2018, Uptake of 226Ra in cementitious systems: a complementary solution chemistry and atomistic simulation study, Appl. Geochem., 96, 204, 10.1016/j.apgeochem.2018.06.015
Leblans, 2011, Storage phosphors for medical imaging, Materials, 4, 1034, 10.3390/ma4061034
Lewis, 2012, Fission product chemistry in oxide fuels, Compr. Nucl. Mater., 2, 515, 10.1016/B978-0-08-056033-5.00042-2
Lloyd, 2000, Direct and Fe(II)-mediated reduction of technetium by Fe(II)-reducing bacteria, Environ. Microbiol., 66, 3743, 10.1128/AEM.66.9.3743-3749.2000
Lukens, 2003, X-ray absorption fine structure studies of speciation of technetium in borosilicate glasses, Mater. Res. Soc. Symp. Proc., 802, 10.1557/PROC-802-DD3.3
Luksic, 2015, Incorporating technetium in minerals and other solids: a review, J. Nucl. Mater., 466, 526, 10.1016/j.jnucmat.2015.08.052
Ma, 2017, Evidence of multiple sorption modes in layered double hydroxides using Mo as structural probe, Environ. Sci. Technol., 51, 5531, 10.1021/acs.est.7b00946
Ma, 2019, A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems, Appl. Geochem., 100, 414, 10.1016/j.apgeochem.2018.12.001
Masters-Waage, 2017, Impacts of repeated redox cycling on technetium mobility in the environment, Environ. Sci. Technol., 51, 14301, 10.1021/acs.est.7b02426
Matschei, 2006, The AFm phase in Portland cement, Cement Concr. Res., 37, 118, 10.1016/j.cemconres.2006.10.010
Mattigod, 2001
Mattigod, 2004, Diffusion of iodine and technetium-99 through waste encasement concrete and unsaturated soil fill material, Mater. Res. Soc. Symp. Proc., 824, 391, 10.1557/PROC-824-CC7.6
Milodowski, 2013, Uptake and retardation of Cl during cement carbonation, Procedia Earth Planetary Sci, 7, 594, 10.1016/j.proeps.2013.03.205
NAGRA, 2002
NAGRA, 2008
Ochs, 2016, 301
Pegg, 2015, Behavior of technetium in nuclear waste vitrification processes, J. Radioanal. Nucl. Chem., 305, 287, 10.1007/s10967-014-3900-9
Posiva, 2012
Rasband, 2013
Saslow, 2018
Schulte, 1987, Sources and behaviour of technetium in the environment, Sci. Total Environ., 64, 163, 10.1016/0048-9697(87)90129-X
SKB, 2015
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751, 10.1107/S0567739476001551
Smith, 1993, The role of oxygen diffusion in the release of technetium from reducing cementitious waste forms, Mater. Res. Soc. Symp. Proc., 294, 247, 10.1557/PROC-294-247
Tallent, 1987, Immobilization of technetium and nitrate in cement-based materials, Mater. Res. Soc. Symp. Proc., 112, 23, 10.1557/PROC-112-23
Takahashi, 2002, Progress in science and technology on photostimulable BaFX:Eu2+ (X=Cl, Br, I) and imaging plates, J. Lumin., 100, 307, 10.1016/S0022-2313(02)00447-7
van Es, 2015, Retention of chlorine-36 by a cementitious backfill, Mineral. Mag., 79, 1297, 10.1180/minmag.2015.079.6.05
Vehmas, 2020, Slag containing low-pH cementitious materials for deep underground nuclear waste repositories, Appl. Geochem., 112
Vehmas, 2017, Reference mix design and castings for low-pH concrete for nuclear waste repositories, KIT Sci. Rep., 7734, 101
Verhoef, 2014
Warwick, 2007, The solubility of technetium (IV) at high pH, Radiochim. Acta, 95, 709, 10.1524/ract.2007.95.12.709
Weaver, 2017, Chemical trends in solid alkali pertechnetates, Inorg. Chem., 56, 2533, 10.1021/acs.inorgchem.6b02694
Westsik, 2014, PNNL-23329
Wieland, 1998, Interaction of Eu(III) and Th(IV) with sulfate-resisting portland cement, Mater. Res. Soc. Symp. Proc., 506, 573, 10.1557/PROC-506-573
Wildung, 1978, Technetium sources and behaviour in the environment, J. Environ. Qual., 8, 156, 10.2134/jeq1979.00472425000800020004x
Zeissler, 1997, Comparison of semiconductor pixel array, phosphor plate, and track-etch detectors for alpha autoradiography, Nucl. Instrum. Methods Phys. Res., A392, 249, 10.1016/S0168-9002(97)00253-2