Retention of technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste

Applied Geochemistry - Tập 116 - Trang 104580 - 2020
Matthew Isaacs1,2, Steve Lange2, Guido Deissmann2, Dirk Bosbach2, Antoni E. Milodowski1,3, David Read1,4
1Department of Chemistry, University of Surrey, Guildford GU2 7XH, United Kingdom
2Institute of Energy and Climate Research (IEK-6): Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
3British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
4National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom

Tài liệu tham khảo

Allen, 1997, Chemical speciation studies of radionuclides by XAFS, J. Phys. IV, 7, 789 Allen, 1997, Technetium speciation in cement waste forms determined by X-ray absorption fine structure spectroscopy, Radiochim. Acta, 76, 77, 10.1524/ract.1997.76.12.77 Amersham Biosciences, 2005 Angus, 2011, The specification of cement powders for waste encapsulation processes at the Sellafield site, 48 Atkins, 1992, Cement hydrate phases: solubility at 25°C, Cement Concr. Res., 22, 241, 10.1016/0008-8846(92)90062-Z Atkins, 1991, Solubility properties of ternary and quaternary compounds in the calcia-alumina-sulfur trioxide-water system, Cement Concr. Res., 21, 991, 10.1016/0008-8846(91)90058-P Baur, 2004, Dissolution-precipitation behaviour of ettringite, monosulfate and calcium silicate hydrate, Cement Concr. Res., 34, 341, 10.1016/j.cemconres.2003.08.016 Berner, 1999, Concentration limits in the cement based Swiss repository for long-lived, intermediate-level radioactive wastes (LMA), PSI Bericht Bel, 2006, Development of the Supercontainer design for deep geological disposal of high-level heat emitting radioactive waste in Belgium, Mater. Res. Soc. Symp. Proc., 932, 10.1557/PROC-932-122.1 Bonhoure, 2002, Iodine species uptake by cement and C-S-H studied by I K-edge X-ray absorption spectroscopy, Radiochim. Acta, 90, 647, 10.1524/ract.2002.90.9-11_2002.647 Brodda, 1989, Leaching of chlorine, cesium, strontium and technetium from cement-fixed intermediate level liquid waste, Mater. Res. Soc. Symp. Proc., 127, 481, 10.1557/PROC-127-481 Brown, 2018, ENDF/B-VIII.0: the 8th major release of the Nuclear Reaction Data Library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets, 148, 10.1016/j.nds.2018.02.001 Bruno, 2006, Spent nuclear fuel, Elements, 2, 343, 10.2113/gselements.2.6.343 Burke, 2005, Effects of progressive anoxia on the solubility of technetium in sediments, Environ. Sci. Technol., 39, 4109, 10.1021/es048124p Carbol, 2012, Spent fuel as waste material, Compr. Nucl. Mater., 5, 389, 10.1016/B978-0-08-056033-5.00106-3 Childs, 2015, The nature of the volatile technetium species formed during vitrification of borosilicate glass, J. Radioanal. Nucl. Chem., 306, 417, 10.1007/s10967-015-4203-5 Cathelin Corkhill, 2012, Technetium-99m transport and immobilisation in porous media: development of a novel nuclear imaging technique, Mater. Res. Soc. Symp. Proc., 1518, 123, 10.1557/opl.2013.111 Cui, 1996, Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material, Environ. Sci. Technol., 30, 2263, 10.1021/es950627v Eriksen, 1993, 32 Evans, 2008, Binding mechanisms of radionuclides to cement, Cement Concr. Res., 38, 543, 10.1016/j.cemconres.2007.11.004 Felipe-Sotelo, 2014, Radial diffusion of radiocaesium and radioiodide through cementitious backfill, Phys. Chem. Earth, 70–71, 60, 10.1016/j.pce.2014.04.001 Felipe-Sotelo, 2016, Solubility constraints affecting the migration of selenium through the cementitious backfill of a geological disposal facility, J. Hazard Mater., 305, 21, 10.1016/j.jhazmat.2015.11.024 Felipe-Sotelo, 2016, The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste, J. Hazard Mater., 314, 211, 10.1016/j.jhazmat.2016.04.057 Giffaut, 2014, ANDRA thermodynamic database for performance assessment: ThermoChimie, Appl. Geochem., 49, 225, 10.1016/j.apgeochem.2014.05.007 Gilliam, 1990, Proceedings of the gulf coast hazardous substance research center second annual symposium: mechanisms and applications of solidification/stabilization of technetium in cement-based grouts, J. Hazard Mater., 24, 189, 10.1016/0304-3894(90)87009-7 Glasser, 2011, Application of inorganic cements to the conditioning and immobilisation of radioactive wastes, 67 Gonzalez, 2002, Energy response of an imaging plate exposed to standard beta sources, Appl. Radiat. Isot., 57, 875, 10.1016/S0969-8043(02)00199-9 Grambow, 2020, Retention of radionuclides on cementitious systems: main outcome of the CEBAMA project, Appl. Geochem., 10.1016/j.apgeochem.2019.104480 Grivé, 2015, Thermodynamic data selection applied to radionuclides and chemotoxic elements: an overview of the ThermoChimie-TDB, Appl. Geochem., 55, 85, 10.1016/j.apgeochem.2014.12.017 Hallam, 2011, Sorption of Tc(IV) to cementitious materials associated with a geological disposal facility for radioactive waste Hawthorne, 2000, The crystal chemistry of sulfate minerals, Rev. Mineral., 40, 10.2138/rmg.2000.40.1 Hoch, 2012, Modelling evolution in the near field of a cementitious repository, Mineral. Mag., 76, 3055, 10.1180/minmag.2012.076.8.21 2017, 70 Isaacs, 2018, The processing and product characteristics of a blended cement grout incorporating a polycarboxylate ether superplasticiser, Adv. Cement Res., 30, 148, 10.1680/jadcr.17.00102 Jantzen, 2010, Cements in waste management, Adv. Cement Res., 22, 225, 10.1680/adcr.2010.22.4.225 Kim, 2018, Volatile species of technetium and rhenium during waste vitrification, J. Non-Cryst. Solids, 481, 41, 10.1016/j.jnoncrysol.2017.10.013 Kleykamp, 1988, The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle, Nucl. Technol., 80, 412, 10.13182/NT88-A34065 Lange, 2019 Lange, 2018, Uptake of 226Ra in cementitious systems: a complementary solution chemistry and atomistic simulation study, Appl. Geochem., 96, 204, 10.1016/j.apgeochem.2018.06.015 Leblans, 2011, Storage phosphors for medical imaging, Materials, 4, 1034, 10.3390/ma4061034 Lewis, 2012, Fission product chemistry in oxide fuels, Compr. Nucl. Mater., 2, 515, 10.1016/B978-0-08-056033-5.00042-2 Lloyd, 2000, Direct and Fe(II)-mediated reduction of technetium by Fe(II)-reducing bacteria, Environ. Microbiol., 66, 3743, 10.1128/AEM.66.9.3743-3749.2000 Lukens, 2003, X-ray absorption fine structure studies of speciation of technetium in borosilicate glasses, Mater. Res. Soc. Symp. Proc., 802, 10.1557/PROC-802-DD3.3 Luksic, 2015, Incorporating technetium in minerals and other solids: a review, J. Nucl. Mater., 466, 526, 10.1016/j.jnucmat.2015.08.052 Ma, 2017, Evidence of multiple sorption modes in layered double hydroxides using Mo as structural probe, Environ. Sci. Technol., 51, 5531, 10.1021/acs.est.7b00946 Ma, 2019, A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems, Appl. Geochem., 100, 414, 10.1016/j.apgeochem.2018.12.001 Masters-Waage, 2017, Impacts of repeated redox cycling on technetium mobility in the environment, Environ. Sci. Technol., 51, 14301, 10.1021/acs.est.7b02426 Matschei, 2006, The AFm phase in Portland cement, Cement Concr. Res., 37, 118, 10.1016/j.cemconres.2006.10.010 Mattigod, 2001 Mattigod, 2004, Diffusion of iodine and technetium-99 through waste encasement concrete and unsaturated soil fill material, Mater. Res. Soc. Symp. Proc., 824, 391, 10.1557/PROC-824-CC7.6 Milodowski, 2013, Uptake and retardation of Cl during cement carbonation, Procedia Earth Planetary Sci, 7, 594, 10.1016/j.proeps.2013.03.205 NAGRA, 2002 NAGRA, 2008 Ochs, 2016, 301 Pegg, 2015, Behavior of technetium in nuclear waste vitrification processes, J. Radioanal. Nucl. Chem., 305, 287, 10.1007/s10967-014-3900-9 Posiva, 2012 Rasband, 2013 Saslow, 2018 Schulte, 1987, Sources and behaviour of technetium in the environment, Sci. Total Environ., 64, 163, 10.1016/0048-9697(87)90129-X SKB, 2015 Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751, 10.1107/S0567739476001551 Smith, 1993, The role of oxygen diffusion in the release of technetium from reducing cementitious waste forms, Mater. Res. Soc. Symp. Proc., 294, 247, 10.1557/PROC-294-247 Tallent, 1987, Immobilization of technetium and nitrate in cement-based materials, Mater. Res. Soc. Symp. Proc., 112, 23, 10.1557/PROC-112-23 Takahashi, 2002, Progress in science and technology on photostimulable BaFX:Eu2+ (X=Cl, Br, I) and imaging plates, J. Lumin., 100, 307, 10.1016/S0022-2313(02)00447-7 van Es, 2015, Retention of chlorine-36 by a cementitious backfill, Mineral. Mag., 79, 1297, 10.1180/minmag.2015.079.6.05 Vehmas, 2020, Slag containing low-pH cementitious materials for deep underground nuclear waste repositories, Appl. Geochem., 112 Vehmas, 2017, Reference mix design and castings for low-pH concrete for nuclear waste repositories, KIT Sci. Rep., 7734, 101 Verhoef, 2014 Warwick, 2007, The solubility of technetium (IV) at high pH, Radiochim. Acta, 95, 709, 10.1524/ract.2007.95.12.709 Weaver, 2017, Chemical trends in solid alkali pertechnetates, Inorg. Chem., 56, 2533, 10.1021/acs.inorgchem.6b02694 Westsik, 2014, PNNL-23329 Wieland, 1998, Interaction of Eu(III) and Th(IV) with sulfate-resisting portland cement, Mater. Res. Soc. Symp. Proc., 506, 573, 10.1557/PROC-506-573 Wildung, 1978, Technetium sources and behaviour in the environment, J. Environ. Qual., 8, 156, 10.2134/jeq1979.00472425000800020004x Zeissler, 1997, Comparison of semiconductor pixel array, phosphor plate, and track-etch detectors for alpha autoradiography, Nucl. Instrum. Methods Phys. Res., A392, 249, 10.1016/S0168-9002(97)00253-2