Resveratrol improves health and survival of mice on a high-calorie diet

Nature - Tập 444 Số 7117 - Trang 337-342 - 2006
Joseph A. Baur1, Kevin Pearson2, Nathan L. Price2, Hamish A. Jamieson3, Carles Lerín4, Avash Kalra2, Vinayakumar Prabhu5, Joanne Allard2, Guillermo López‐Lluch6, Kaitlyn N. Lewis2, Paul J. Pistell2, Suresh Poosala7, Kevin G. Becker5, Olivier Boss8, Dana M. Gwinn9, Mingyi Wang10, Sharan Ramaswamy11, Kenneth W. Fishbein11, Richard G. Spencer11, Edward G. Lakatta10, David G. Le Couteur3, Reuben J. Shaw9, Plácido Navas6, Pere Puigserver4, Donald K. Ingram12, Rafael de Cabo2, David Sinclair1
1Department of Pathology, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Massachusetts, 02115, USA
2Laboratory of Experimental Gerontology,
3Centre for Education and Research on Ageing, and the ANZAC Research Institute University of Sydney, Concord, New South Wales, 2139, Australia
4Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
5Gene Expression and Genomics Unit,
6Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide-CSIC, 41013, Sevilla, Spain
7Research Resources Branch,
8Sirtris Pharmaceuticals, Inc., Cambridge, 790 Memorial Drive, Massachusetts, 02139, USA
9Molecular and Cell Biology Laboratory, The Salk Institute, La Jolla, 10010 N Torrey Pines Road, California, 92037, USA
10Laboratory of Cardiovascular Science,
11Laboratory of Clinical Investigation, Research Resources Branch of the Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 5600 Nathan Shock Drive, Maryland, 21224, USA
12Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, 6400 Perkins Road, Louisiana, 70808, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Olshansky, S. J. Projecting the future of U.S. health and longevity. Health Aff. (Millwood) 24, (suppl. 2)W5R86–W5R89 (2005)

Li, Z., Bowerman, S. & Heber, D. Health ramifications of the obesity epidemic. Surg. Clin. North Am. 85, 681–701 (2005)

Ingram, D. K. et al. Development of calorie restriction mimetics as a prolongevity strategy. Ann. NY Acad. Sci. 1019, 412–423 (2004)

Sinclair, D. A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987–1002 (2005)

Guarente, L. & Picard, F. Calorie restriction—the SIR2 connection. Cell 120, 473–482 (2005)

Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003)

Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004)

Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9, 605–615 (2005)

Jarolim, S. et al. A novel assay for replicative lifespan in Saccharomyces cerevisiae.. FEMS Yeast Res. 5, 169–177 (2004)

Valenzano, D. R. et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 16, 296–300 (2006)

Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004)

Chen, J. et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280, 40364–40374 (2005)

Kolthur-Seetharam, U., Dantzer, F., McBurney, M. W., de Murcia, G. & Sassone-Corsi, P. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5, 873–877 (2006)

Raval, A. P., Dave, K. R. & Perez-Pinzon, M. A. Resveratrol mimics ischemic preconditioning in the brain. J. Cereb. Blood Flow Metab. 26, 1141–1147 (2006)

Frescas, D., Valenti, L. & Accili, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280, 20589–20595 (2005)

Denu, J. M. The Sir2 family of protein deacetylases. Curr. Opin. Chem. Biol. 9, 431–440 (2005)

Weindruch, R. & Walford, R. L. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215, 1415–1418 (1982)

Siebler, J. & Galle, P. R. Treatment of nonalcoholic fatty liver disease. World J. Gastroenterol. 12, 2161–2167 (2006)

Scrocchi, L. A. & Drucker, D. J. Effects of aging and a high fat diet on body weight and glucose tolerance in glucagon-like peptide-1 receptor-/- mice. Endocrinology 139, 3127–3132 (1998)

McCarty, M. F. Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med. Hypotheses 63, 334–339 (2004)

Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans.. Genes Dev. 18, 3004–3009 (2004)

Zang, M. et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180–2191 (2006)

Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005)

Lopez-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006)

Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999)

Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001)

Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005)

Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3, 429–438 (2006)

Cheadle, C., Vawter, M. P., Freed, W. J. & Becker, K. G. Analysis of microarray data using Z score transformation. J. Mol. Diagn. 5, 73–81 (2003)

Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev. Drug Discov. 5, 493–506 (2006)

Kim, S. Y. & Volsky, D. J. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6, 144 (2005)

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans.. Dev. Cell 1, 633–644 (2001)

Kenyon, C. A conserved regulatory mechanism for aging. Cell 105, 165–168 (2001)

Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004)

Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005)

Ingram, D. K. et al. Calorie restriction mimetics: an emerging research field. Aging Cell 5, 97–108 (2006)

Hipkiss, A. R. Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?. Ann. NY Acad. Sci. 1067, 361–368 (2006)

Taub, R. Liver regeneration: from myth to mechanism. Nature Rev. Mol. Cell Biol. 5, 836–847 (2004)

Xu, X. & Sonntag, W. E. Growth hormone-induced nuclear translocation of Stat-3 decreases with age: modulation by caloric restriction. Am. J. Physiol. 271, E903–E909 (1996)

Wilsey, J. & Scarpace, P. J. Caloric restriction reverses the deficits in leptin receptor protein and leptin signaling capacity associated with diet-induced obesity: role of leptin in the regulation of hypothalamic long-form leptin receptor expression. J. Endocrinol. 181, 297–306 (2004)

Olsen, A., Vantipalli, M. C. & Lithgow, G. J. Checkpoint proteins control survival of the postmitotic cells in Caenorhabditis elegans.. Science 312, 1381–1385 (2006)

Zhou, Z. et al. Cidea-deficient mice have lean phenotype and are resistant to obesity. Nature Genet. 35, 49–56 (2003)

Howitz, K. T. & Sinclair, D. A. in Handbook of the Biology of Aging (eds Masoro, E. J. & Austad, S. N.) 63–104 (Elsevier, Boston, 2006)