Results of FDA’s First Interlaboratory Computational Study of a Nozzle with a Sudden Contraction and Conical Diffuser

Springer Science and Business Media LLC - Tập 4 Số 4 - Trang 374-391 - 2013
Sarah E. Stewart1, Prasanna Hariharan1, Eric G. Paterson2, Greg W. Burgreen3, Varun Reddy2, Steven W. Day4, Matthew Giarra4, Keefe B. Manning2, Steven Deutsch2, Michael R. Berman1, Matthew R. Myers1, Richard A. Malinauskas1
1Office of Science and Engineering Laboratories, Food and Drug Administration, Silver Spring, USA
2Pennsylvania State University, University Park, USA
3Mississippi State University, Starkville, USA
4Rochester Institute of Technology, Rochester, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Apsley, D. D., and M. A. Leschziner. Advanced turbulence modelling of separated flow in a diffuser. Flow Turbul. Combust. 63:81–112, 1999.

Bhushan, S., and D. K. Walters. A dynamic hybrid Reynolds-averaged Navier Stokes–Large eddy simulation modeling framework. Phys. Fluids 24:1–7, 2012.

Bhushan, S., D. K. Walters, and G. W. Burgreen. Laminar, turbulent, and transitional simulations in benchmark cases with cardiovascular device features. Cardiovasc. Eng. Technol. 2013. doi: 10.1007/s13239-013-0155-5 .

Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.

Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro comparison of the effect of stent configuration on wall shear stress using time-resolved particle image velocimetry. Ann. Biomed. Eng. 38:889–902, 2010.

Chen, Z., Y. Fan, X. Deng, and Z. Xu. A new way to reduce flow disturbance in endovascular stents: a numerical study. Artif. Organs 35:392–397, 2011.

Cherdron, W., F. Durst, and J. H. Whitelaw. Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J. Fluid Mech. 84:13–31, 1978.

De Bartolo, C., A. Nigro, G. Fragomeni, F. M. Colacino, D. Wang, C. C. Jones, and J. Zwischenberger. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula. ASAIO J. 57:318–327, 2011.

Delorme, Y. T., K. Anupindi, and S. H. Frankel. Large eddy simulation of FDA’s idealized medical device. Cardiovasc. Eng. Technol. 2013. doi: 10.1007/s13239-013-0161-7 .

Down, L. A. Computational investigations of red blood cell mechanical trauma and of diseased renal artery hemodynamics. Ph.D. thesis. University of Oklahoma, 2011..

Durst, F., A. Melling, and J. H. Whitelaw. Low Reynolds number flow over a plane symmetric sudden expansion. J. Fluid Mech. 64:111–128, 1974.

Etebari, A., and P. P. Vlachos. Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp. Fluids 39:1040–1050, 2005.

Fung, Y. C. Biomechanics: Circulation (2nd ed.). New York: Springer, 1997.

Giridharan, G. A., C. Lederer, A. Berthe, L. Goubergrits, J. Hutzenlaub, M. S. Slaughter, R. D. Dowling, P. A. Spence, and S. C. Koenig. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 33:1193–1202, 2011.

Goubergrits, L., J. Osman, and K. Affeld First experience with an FDA critical path initiative: CFD and hemolysis. In: Proceedings of the XXXVI Annual ESAO Congress. Compiègne, France; 2009. p. 398.

Hariharan, P., M. Giarra, V. Reddy, S. Day, K. B. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133:041002, 2011.

Heflin, L. A., D. V. Papavassiliou, and E. A. O’Rear. Simulation of hemolysis experiments: relating hemolysis and turbulent kinetic energy dissipation. Biomedical Engineering Society Annual Meeting, Pittsburgh, PA, Oct. 7–10, 2009.

Hinds, M. T., Y. J. Park, S. A. Jones, D. P. Giddens, and B. R. Alevriadou. Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J. Biomech. 34:95–103, 2001.

Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:430–437, 2004.

Hund, S. J., J. F. Antaki, and M. Massoudi. On the representation of turbulent stresses for computing blood damage. Int. J. Eng. Sci. 48:1325–1331, 2010.

Iaccarino, G. Predictions of a turbulent separated flow using commercial CFD codes. J. Fluid Eng. Trans. ASME 123:819–828, 2001.

Kähler, C. J., U. Scholz, and J. Ortmanns. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long distance micro-PIV. Exp. Fluids 41:327–341, 2006.

Kameneva, M. V., G. W. Burgreen, K. Kono, B. Repko, J. F. Antaki, and M. Umezu. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50:418–423, 2004.

Karri, S., J. Charonko, and P. P. Vlachos. Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Meas. Sci. Technol. 20:045401-1–045401-14, 2009.

Kaufmann, T. A., T. Linde, E. Cuenca-Navalon, C. Schmitz, M. Hormes, T. Schmitz-Rode, and U. Steinseifer. Transient, three-dimensional flow field simulation through a mechanical, trileaflet heart valve prosthesis. ASAIO J. 57:278–282, 2011.

Medvitz, R. B., D. A. Boger, V. Izraelev, G. Rosenberg, and E. G. Paterson. Computational fluid dynamics design and analysis of a passively suspended Tesla pump left ventricular assist device. Artif. Organs 35:522–533, 2011.

Nabavi, M. Three-dimensional asymmetric flow through a planar diffuser: effects of divergence angle, Reynolds number and aspect ratio. Int. Commun. Heat Mass Transf. 37:17–20, 2010.

Oberkampf, W. L., and M. F. Barone. Measures of agreement between computation and experiment: validation metrics. J. Comput. Phys. 217:5–36, 2006.

Oberkampf, W. L., T. G. Trucano, and C. Hirsch. Verification validation and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57:345–384, 2004.

Pekkan, K., D. de Zélicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study. Ann. Biomed. Eng. 33:284–300, 2005.

Stewart, S. F., E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, M. R. Berman, M. R. Myers, and R. A. Malinauskas. Assessment of CFD performance in simulations of an idealized medical device—results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 3:139–160, 2012.

Umezu, M., H. Fujimasu, T. Yamada, T. Fujimoto, M. Ranawake, A. Nogawa, and T. Kijima. Fluid dynamic investigation of mechanical blood hemolysis. In: Heart Replacement Artificial Heart 5, edited by T. Akutso, and H. Koyanagi. Tokyo: Springer, 1996, pp. 327–335.

Westerweel, J., P. F. Geelhoed, and R. Lindken. Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37:375–384, 2004.

White, A. T., and C. K. Chong. Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. J. Comput. Phys. 230:6367–6378, 2011.

Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device Thrombogenicity Emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43:2400–2409, 2010.

Yang, X. C., Y. Zhang, X. M. Gui, and S. S. Hu. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump. Artif. Organs. 35(10):948–955, 2011.

Yoshida, M., P. D. Wearden, O. Dur, K. Pekkan, and V. O. Morell. Right ventricular outflow tract reconstruction with bicuspid valved polytetrafluoroethylene conduit. Ann. Thorac. Surg. 91:1235–1238, 2011.

Yu, H., D. Thévenin, and G. Janiga. Numerical prediction of hemolysis based on computational fluid dynamics. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011). Brussels; 2011. pp. 1–4.