Phân đoạn dựa trên kết nối chức năng trạng thái nghỉ của nhân răng người: những phát hiện mới và ý nghĩa lâm sàng

Brain Structure and Function - Tập 228 - Trang 1799-1810 - 2023
Maitreyee Kulkarni1, Jerillyn S. Kent1, Katie Park2, Xavier Guell3, Sheeba Anteraper4,5
1Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, USA
2University of Illinois, Urbana-Champaign, Champaign, USA
3Massachusetts General Hospital, Harvard Medical School, Boston, USA
4Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, USA
5Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, United States

Tóm tắt

Trong nhiều năm, tiểu não bị bỏ qua trong các nghiên cứu chụp cộng hưởng từ chức năng (fMRI) do những hạn chế về công nghệ. Sự xuất hiện của các chiến lược thu thập và tái cấu trúc dữ liệu mới (ví dụ, hình ảnh đa lát đồng thời trên toàn não) sử dụng các cuộn đa kênh đã vượt qua những hạn chế này, mang đến những cải tiến chưa từng có về tỉ lệ tín hiệu trên nhiễu và độ phân giải không-thời gian. Ở đây, chúng tôi nhằm cung cấp một báo cáo ngắn gọn về các nhân tiểu não sâu, đặc biệt tập trung vào các nhân răng, các nhân đầu ra chính, nằm trong cả hai mạch não-tiểu não nhận thức và vận động. Chúng tôi nhấn mạnh tầm quan trọng của việc phân đoạn chức năng trong việc tinh chỉnh hiểu biết của chúng tôi về kết nối chức năng trạng thái nghỉ (RSFC) rộng lớn trong cả sức khỏe và bệnh tật. Đầu tiên, chúng tôi xem xét các công trình liên quan đến tọa độ chức năng của các nhân răng, bao gồm cả những tiến bộ gần đây trong phân đoạn chức năng. Tiếp theo, chúng tôi xem xét các nghiên cứu RSFC sử dụng các nhân răng làm vùng hạt giống quan tâm trong các quần thể thần kinh và tâm thần, và thảo luận về những lợi ích tiềm năng của việc áp dụng các phân chia được xác định chức năng. Cuối cùng, chúng tôi thảo luận về những tiến bộ công nghệ gần đây và nhấn mạnh hình ảnh thần kinh siêu cao trường như một công cụ để tăng cường phân tích RSFC được phân đoạn chức năng trong các quần thể lâm sàng.

Từ khóa

#tiểu não #nhân răng #kết nối chức năng trạng thái nghỉ #phân đoạn chức năng #chụp cộng hưởng từ chức năng

Tài liệu tham khảo

Akakin A, Peris-Celda M, Kilic T, Seker A, Gutierrez-Martin A, Rhoton A Jr (2014) The dentate nucleus and its projection system in the human cerebellum: the dentate nucleus microsurgical anatomical study. Neurosurgery 74(4):401–424. https://doi.org/10.1227/neu.0000000000000293. (discussion 424–405) Andreasen NC, Paradiso S, O’Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 24(2):203–218. https://doi.org/10.1093/oxfordjournals.schbul.a033321 Anteraper SA, Guell X, Taylor HP, D’Mello A, Whitfield-Gabrieli S, Joshi G (2019) Intrinsic functional connectivity of dentate nuclei in autism spectrum disorder. Brain Connect 9(9):692–702. https://doi.org/10.1089/brain.2019.0692 Anteraper SA, Guell X, Collin G, Qi Z, Ren J, Nair A et al (2021) Abnormal function in dentate nuclei precedes the onset of psychosis: a resting-state fMRI study in high-risk individuals. Schizophr Bull 47(5):1421–1430. https://doi.org/10.1093/schbul/sbab038 Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, Ramnani N (2010) Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage 49(3):2045–2052. https://doi.org/10.1016/j.neuroimage.2009.10.045 Balsters JH, Laird AR, Fox PT, Eickhoff SB (2014) Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling. Hum Brain Mapp 35(7):3152–3169. https://doi.org/10.1002/hbm.22392 Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M et al (2014) Dissociable functional networks of the human dentate nucleus. Cereb Cortex 24(8):2151–2159. https://doi.org/10.1093/cercor/bht065 Bharti K, Khan M, Beaulieu C, Graham SJ, Briemberg H, Frayne R et al (2020) Involvement of the dentate nucleus in the pathophysiology of amyotrophic lateral sclerosis: a multi-center and multi-modal neuroimaging study. Neuroimage Clin 28:102385. https://doi.org/10.1016/j.nicl.2020.102385 Bond KM, Brinjikji W, Eckel LJ, Kallmes DF, McDonald RJ, Carr CM (2017) Dentate update: imaging features of entities that affect the dentate nucleus. AJNR Am J Neuroradiol 38(8):1467–1474. https://doi.org/10.3174/ajnr.A5138 Buckner RL (2013) The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron 80(3):807–815. https://doi.org/10.1016/j.neuron.2013.10.044 Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106(5):2322–2345. https://doi.org/10.1152/jn.00339.2011 Deistung A, Schäfer A, Schweser F, Biedermann U, Güllmar D, Trampel R et al (2013) High-resolution MR imaging of the human brainstem in vivo at 7 Tesla. Front Hum Neurosci 7:710. https://doi.org/10.3389/fnhum.2013.00710 Deistung A, Stefanescu MR, Ernst TM, Schlamann M, Ladd ME, Reichenbach JR, Timmann D (2016) Structural and functional magnetic resonance imaging of the cerebellum: considerations for assessing cerebellar ataxias. Cerebellum 15(1):21–25. https://doi.org/10.1007/s12311-015-0738-9 Deshpande G, Zhao X, Robinson J (2022) Functional parcellation of the hippocampus based on its layer-specific connectivity with default mode and dorsal attention networks. Neuroimage 254:119078. https://doi.org/10.1016/j.neuroimage.2022.119078 Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER et al (2011) Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage 54(3):1786–1794. https://doi.org/10.1016/j.neuroimage.2010.10.035 Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89(1):634–639. https://doi.org/10.1152/jn.00626.2002 Grbatinić I, Milošević N (2016) Classification of adult human dentate nucleus border neurons: artificial neural networks and multidimensional approach. J Theor Biol 404:273–284. https://doi.org/10.1016/j.jtbi.2016.06.011 Guell X, Schmahmann J (2020) Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum 19(1):1–5. https://doi.org/10.1007/s12311-019-01083-9 Guell X, Gabrieli JD, Schmahmann JD (2018) Triple representation of language working memory social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage 172:437–449. https://doi.org/10.1016/j.neuroimage.2018.01.082 Guell X, D’Mello AM, Hubbard NA, Romeo RR, Gabrieli JDE, Whitfield-Gabrieli S et al (2020) Functional territories of human dentate nucleus. Cereb Cortex 30(4):2401–2417. https://doi.org/10.1093/cercor/bhz247 Habas C (2010) Functional imaging of the deep cerebellar nuclei: a review. Cerebellum 9(1):22–28. https://doi.org/10.1007/s12311-009-0119-3 Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ (2008) The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev 59(1):185–200. https://doi.org/10.1016/j.brainresrev.2008.07.005 Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E, Kolluru SS et al (2020) Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science. https://doi.org/10.1126/science.abd5059 Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H et al (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum (Lond, Engl) 13(1):151–177. https://doi.org/10.1007/s12311-013-0511-x Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG et al (2011) Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. Neuroimage 54(4):2612–2622. https://doi.org/10.1016/j.neuroimage.2010.11.028 Lee YJ, Guell X, Hubbard NA, Siless V, Frosch IR, Goncalves M et al (2021) Functional alterations in cerebellar functional connectivity in anxiety disorders. Cerebellum 20(3):392–401. https://doi.org/10.1007/s12311-020-01213-8 Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113(44):12574–12579. https://doi.org/10.1073/pnas.1608282113 Maric D (2010) Qualitative and quantitative analysis of adult human dentate nucleus neurons morphology. University of Novi Sad, Belgrade, Serbia Matano S (2001) Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol 114(2):163–165. https://doi.org/10.1002/1096-8644(200102)114:2%3c163::AID-AJPA1016%3e3.0.CO;2-F Middleton FA, Strick PL (1998) Cerebellar output: motor and cognitive channels. Trends Cogn Sci 2(9):348–354. https://doi.org/10.1016/S1364-6613(98)01220-0 Nemani A, Lowe MJ (2021) Seed-based test-retest reliability of resting state functional magnetic resonance imaging at 3T and 7T. Med Phys 48(10):5756–5764. https://doi.org/10.1002/mp.15210 Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C et al (2017) Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum 16(2):283–292. https://doi.org/10.1007/s12311-016-0795-8 Olivito G, Serra L, Marra C, Di Domenico C, Caltagirone C, Toniolo S et al (2020) Cerebellar dentate nucleus functional connectivity with cerebral cortex in Alzheimer’s disease and memory: a seed-based approach. Neurobiol Aging 89:32–40. https://doi.org/10.1016/j.neurobiolaging.2019.10.026 Palesi F, Ferrante M, Gaviraghi M, Misiti A, Savini G, Lascialfari A et al (2021) Motor and higher-order functions topography of the human dentate nuclei identified with tractography and clustering methods. Hum Brain Mapp 42(13):4348–4361. https://doi.org/10.1002/hbm.25551 Priovoulos N, Andersen M, Dumoulin SO, Boer VO, van der Zwaag W (2023) High-resolution motion-corrected 7.0-T MRI to derive morphologic measures from the human cerebellum in vivo. Radiology 307(2):220989. https://doi.org/10.1148/radiol.220989 Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7(7):511–522. https://doi.org/10.1038/nrn1953 Raudel S-C, Agnès G, José MD-G (2007) The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci 27(25):6620. https://doi.org/10.1523/JNEUROSCI.0488-07.2007 Sbardella E, Upadhyay N, Tona F, Prosperini L, De Giglio L, Petsas N et al (2017) Dentate nucleus connectivity in adult patients with multiple sclerosis: functional changes at rest and correlation with clinical features. Mult Scler 23(4):546–555. https://doi.org/10.1177/1352458516657438 Schmahmann JD (1998) Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci 2(9):362–371. https://doi.org/10.1016/S1364-6613(98)01218-2 Seoane S, Modrono C, Gonzalez-Mora JL, Janssen N (2022) Medial temporal lobe contributions to resting-state networks. Brain Struct Funct 227(3):995–1012. https://doi.org/10.1007/s00429-021-02442-1 Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, d’Arceuil H, De Zeeuw C (2020) The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci U S A 117(32):19538–19543. https://doi.org/10.1073/pnas.2002896117 Steele CJ, Anwander A, Bazin PL, Trampel R, Schaefer A, Turner R et al (2017) Human cerebellar sub-millimeter diffusion imaging reveals the motor and non-motor topography of the dentate nucleus. Cereb Cortex 27(9):4537–4548. https://doi.org/10.1093/cercor/bhw258 Stoodley CJ (2016) The cerebellum and neurodevelopmental disorders. Cerebellum 15(1):34–37. https://doi.org/10.1007/s12311-015-0715-3 Sultan F, Hamodeh S, Baizer JS (2010) The human dentate nucleus: a complex shape untangled. Neuroscience 167(4):965–968. https://doi.org/10.1016/j.neuroscience.2010.03.007 Thurling M, Kuper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, Timmann D (2011) Activation of the dentate nucleus in a verb generation task: a 7T MRI study. Neuroimage 57(3):1184–1191. https://doi.org/10.1016/j.neuroimage.2011.05.045 Tikoo S, Pietracupa S, Tommasin S, Bologna M, Petsas N, Bharti K et al (2020) Functional disconnection of the dentate nucleus in essential tremor. J Neurol 267(5):1358–1367. https://doi.org/10.1007/s00415-020-09711-9 Tikoo S, Suppa A, Tommasin S, Gianni C, Conte G, Mirabella G et al (2022) The cerebellum in drug-naive children with tourette syndrome and obsessive-compulsive disorder. Cerebellum 21(6):867–878. https://doi.org/10.1007/s12311-021-01327-7 Tona F, De Giglio L, Petsas N, Sbardella E, Prosperini L, Upadhyay N et al (2018) Role of cerebellar dentate functional connectivity in balance deficits in patients with multiple sclerosis. Radiology 287(1):267–275. https://doi.org/10.1148/radiol.2017170311 Uddin LQ, Yeo BTT, Spreng RN (2019) Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr 32(6):926–942. https://doi.org/10.1007/s10548-019-00744-6 Upadhyay N, Suppa A, Piattella MC, Gianni C, Bologna M, Di Stasio F et al (2017) Functional disconnection of thalamic and cerebellar dentate nucleus networks in progressive supranuclear palsy and corticobasal syndrome. Parkinsonism Relat Disord 39:52–57. https://doi.org/10.1016/j.parkreldis.2017.03.008 van Oort ESB, Mennes M, Navarro Schroder T, Kumar VJ, Zaragoza Jimenez NI, Grodd W et al (2018) Functional parcellation using time courses of instantaneous connectivity. Neuroimage 170:31–40. https://doi.org/10.1016/j.neuroimage.2017.07.027 Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE et al (2020) Consensus paper: cerebellum and social cognition. Cerebellum 19(6):833–868. https://doi.org/10.1007/s12311-020-01155-1 Vu AT, Jamison K, Glasser MF, Smith SM, Coalson T, Moeller S et al (2017) Tradeoffs in pushing the spatial resolution of fMRI for the 7T human connectome project. Neuroimage 154:23–32. https://doi.org/10.1016/j.neuroimage.2016.11.049 Xie Y, Xi Y, Cui LB, Li C, Xu Y, Zhang Y et al (2021a) Altered functional connectivity of the dentate nuclei in patients with schizophrenia. Schizophr Res 233:16–23. https://doi.org/10.1016/j.schres.2021.06.035 Xie YJ, Xi YB, Cui LB, Guan MZ, Li C, Wang ZH et al (2021b) Functional connectivity of cerebellar dentate nucleus and cognitive impairments in patients with drug-naive and first-episode schizophrenia. Psychiatry Res 300:113937. https://doi.org/10.1016/j.psychres.2021.113937 Yang H, Wang N, Luo X, Lv H, Liu H, Fan G (2019) Altered functional connectivity of dentate nucleus in parkinsonian and cerebellar variants of multiple system atrophy. Brain Imaging Behav 13(6):1733–1745. https://doi.org/10.1007/s11682-019-00097-5 Yoshida J, Onate M, Khatami L, Vera J, Nadim F, Khodakhah K (2022) Cerebellar contributions to the basal ganglia influence motor coordination, reward processing, and movement vigor. J Neurosci 42(45):8406–8415. https://doi.org/10.1523/JNEUROSCI.1535-22.2022 Zhang X-Y, Wang J-J, Zhu J-N (2016) Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias 3(1):9. https://doi.org/10.1186/s40673-016-0047-1