Responsibility of consumers for mining capacity: decomposition analysis of scarcity-weighted metal footprints in the case of Japan

iScience - Tập 24 - Trang 102025 - 2021
Ryosuke Yokoi1, Keisuke Nansai2,3, Kenichi Nakajima2,4, Takuma Watari2,4, Masaharu Motoshita1
1Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
2Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
3ISA, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
4Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan

Tài liệu tham khảo

Achzet, 2013, How to evaluate raw material supply risks – an overview, Resour. Policy, 38, 435, 10.1016/j.resourpol.2013.06.003 Ali, 2017, Mineral supply for sustainable development requires resource governance, Nature, 543, 367, 10.1038/nature21359 Alonso, 2007, Material availability and the supply chain: risks, effects, and resources, Environ. Sci. Technol., 41, 6649, 10.1021/es070159c Ang, 2005, The LMDI approach to decomposition analysis: a practical guide, Energy Policy, 33, 867, 10.1016/j.enpol.2003.10.010 Ang, 2015, LMDI decomposition approach A guide for implementation, Energy Policy, 86, 233, 10.1016/j.enpol.2015.07.007 Bach, 2016, Integrated method to assess resource efficiency - ESSENZ, J. Clean. Prod., 137, 118, 10.1016/j.jclepro.2016.07.077 Bruckner, 2012, Materials embodied in international trade – global material extraction and consumption between 1995 and 2005, Glob. Environ. Change, 22, 568, 10.1016/j.gloenvcha.2012.03.011 Christmann, 2018, Towards a more equitable use of mineral resources, Nat. Resour. Res., 27, 159, 10.1007/s11053-017-9343-6 Dewulf, 2016, Criticality on the international scene: Quo vadis?, Resour. Policy, 50, 169, 10.1016/j.resourpol.2016.09.008 Elshkaki, 2018, Resource demand scenarios for the major metals, Environ. Sci. Technol., 52, 2491, 10.1021/acs.est.7b05154 Galli, 2012, Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet, Ecol. Indic., 16, 100, 10.1016/j.ecolind.2011.06.017 Gemechu, 2015, Import-based indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments, J. Ind. Ecol., 20, 154, 10.1111/jiec.12279 Graedel, 2017, Grand challenges in metal life cycles, Nat. Resour. Res., 27, 181, 10.1007/s11053-017-9333-8 Graedel, 2016, Six years of criticality assessments: what have we learned so far?, J. Ind. Ecol., 20, 692, 10.1111/jiec.12305 Helbig, 2016, How to evaluate raw material vulnerability – an overview, Resour. Policy, 48, 13, 10.1016/j.resourpol.2016.02.003 Hoekstra, 2014, Humanity’s unsustainable environmental footprint, Science, 344, 1114, 10.1126/science.1248365 Jowitt, 2020, Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production, Commun. Earth Environ., 1, 13, 10.1038/s43247-020-0011-0 Lèbre, 2019, Source risks as constraints to future metal supply, Environ. Sci. Technol., 53, 10571, 10.1021/acs.est.9b02808 Lee, 2020, Reviewing the material and metal security of low-carbon energy transitions, Renew. Sustain. Energy Rev., 124, 109789, 10.1016/j.rser.2020.109789 Liu, 2020, Drivers of global metal footprint during 1995-2013, J. Clean. Prod., 256, 120467, 10.1016/j.jclepro.2020.120467 Mudd, 2018, Growing global copper resources, reserves and production: discovery is not the only control on supply, Econ. Geol., 113, 1235, 10.5382/econgeo.2018.4590 Nakajima, 2019, Global distribution of used and unused extracted materials induced by consumption of iron, copper, and nickel, Environ. Sci. Technol., 53, 1555, 10.1021/acs.est.8b04575 Nansai, 2009, Improving the completeness of product carbon footprints using a global link input-output model: the case study of Japan, Econ. Syst. Res., 21, 267, 10.1080/09535310903541587 Nansai, 2015, Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan, Environ. Sci. Technol., 49, 2022, 10.1021/es504255r Nansai, 2017, The role of primary processing in the supply risks of critical metals, Econ. Syst. Res., 29, 335, 10.1080/09535314.2017.1295923 Northey, 2018, Unresolved complexity in assessments of mineral resource depletion and availability, Nat. Resour. Res., 27, 241, 10.1007/s11053-017-9352-5 Schrijvers, 2020, A review of methods and data to determine raw material criticality, Resour. Conserv. Recycl., 155, 104617, 10.1016/j.resconrec.2019.104617 Sprecher, 2015, Framework for resilience in material supply chains, with a case study from the 2010 rare earth Crisis, Environ. Sci. Technol., 49, 6740, 10.1021/acs.est.5b00206 Yokoi, 2020, Significance of country-specific context in metal scarcity assessment from a perspective of short-term mining capacity, Resour. Conserv. Recycl., 105305 UNEP (2013). Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles. A Report of the Working Group on the Global Metal Flows to the International Resource Panel, Paris, France. Valenta, 2019, Re-thinking complex orebodies: Consequences for the future world supply of copper, J. Clean. Prod., 220, 816, 10.1016/j.jclepro.2019.02.146 Vivanco, 2017, Scarcity-weighted global land and metal footprints, Ecol. Indic., 83, 323, 10.1016/j.ecolind.2017.08.004 Watari, 2021, Major metals demand, supply, and environmental impacts to 2100 A critical review, Resour. Conserv. Recycl., 164, 105107, 10.1016/j.resconrec.2020.105107 Wang, 2020, Scarcity-weighted fossil fuel footprint of China at the provincial level, Appl. Energy, 258, 144081, 10.1016/j.apenergy.2019.114081 Wiedmann, 2018, Environmental and social footprints of international trade, Nat. Geosci., 11, 314, 10.1038/s41561-018-0113-9 Wiedmann, 2015, The material footprint of nations, Proc. Natl. Acad. Sci. U S A, 112, 6271, 10.1073/pnas.1220362110