Responses to Constrained Stimulus Sequences in Nonlinear Psychophysics

Nonlinear Dynamics, Psychology, and Life Sciences - Tập 5 - Trang 205-222 - 2001
Robert A. M. Gregson1
1Division of Psychology, School of Life Sciences, Australian National University, Canberra, Australia

Tóm tắt

Generic models used in nonlinear psychophysical dynamics (NPD) have been extensively explored for their capacity to simulate both local singular phenomena and non-monotonic response functions. Internal parameters representing a form of system sensitivity and secondary recursive activity can interact when very low stimulation operates on the gain controlling the evolution of response trajectories, when these trajectories evolve either singly or when chained. Ways in which an existing NPD model can, without change of structure, incorporate naturalistic processes of feedback and stimulus constraint are illustrated. Stimuli-response pairs presented in long closely spaced sequences may appear to be created by a diversity of cognitive strategies, but this assumption is not necessary if nonlinear dynamics are involved. The total system may then resemble the convolution of two fast/slow trajectories. Cusp catastrophe-like sequences can be induced. Nonparametric bases for making statistical comparisons between theory and data, when both are in time series form, are given.

Tài liệu tham khảo

Branner, B., & Hubbard, J. H. (1988). The iteration of cubic polynomials, Part I: The global topology of parameter space. Acta mathematica, 160, 143–206. Branner, B., & Hubbard, J. H. (1992). The iteration of cubic polynomials, Part II: Patterns and parapatterns. Acta mathematica, 169, 229–325. Brock, W. A., Hseih, D. A., & LeBaron, B. (1991). Nonlinear dynamics, chaos, and instability: Statistical theory and economic evidence. Cambridge, Mass: MIT Press. Diener,M. (1984). The canard unchained, or how fast/slow dynamical systems bifurcate. Mathematical Intelligencer, 6, 38–49. Fechner, G. (1860). Elemente der Psychophysik. Leipzig: Breitkopf und Härtel. Geake, J. G., & Gregson, R. A. M. (1999). Modelling the internal generation of rhythm as an extension of nonlinear psychophysics. Musicae Scientiae, 3, 217–235. Gregson, R. A. M. (1988). Nonlinear psychophysical dynamics. Hillsdale, NJ: Lawrence Erlbaum Associates. Gregson, R. A. M. (1992). n-Dimensional nonlinear psychophysics. Hillsdale, NJ: Lawrence Erlbaum Associates. Gregson, R. A. M. (1995). Cascades and fields in perceptual psychophysics. Singapore: World Scientific. Gregson, R. A. M. (1999). Narrow parameter windows and analogues of contextual noise in nonlinear psychophysics. Nonlinear Dynamics, Psychology, and Life Sciences, 3, 235–258. Gregson, R. A. M. (2000a). Negative masking and serial adaptation in nonlinear psychophysics. Proceedings of the 5th Biennial Australasian Cognitive Science Conference. Melbourne: Melbourne University. Gregson, R. A. M. (2000b). Elementary identification of nonlinear trajectory entropies. Australian Journal of Psychology, 52, 121–126. Guastello, S. J. (1995). Chaos, catastrophe and human affairs: Applications of nonlinear dynamics to work, organizations and socal evolution. Mahwah, NJ: Lawrence Erlbaum Associates. Heath, R. A. (2000). Nonlinear dynamics: Techniques and applications in psychology. Mahwah, NJ: Lawrence Erlbaum Associates. Henmi, T., & Kalish, M. L. (1998). Complex behavior in perceptual line length. Complexity International, 6, [http://life.csu.edu.au/complex/ci/vol6/henmi/]. Helson, H. (1964). Adaptation level theory. New York: Harper and Row. Khibnik, A. I., Krauskopf, B., & Rousseau, C. (1998). Global study of a family of cubic Liénard equations. Nonlinearity, 11, 1505–1519. Krantz, D. H. (1972). A theory of magnitude estimation and cross-modality matching. Journal of Mathematical Psychology, 9, 168–199. Laming, D. (1986). Sensory analysis. London: Academic Press. Milnor, J. (1992). Remarks on iterated cubic maps. Experimental Mathematics, 1, 5–24. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical recipes. New York: Cambridge University Press. Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception (with commentaries). Behavioral and Brain Sciences, 22, 341–423. Quastler, H. (Ed.) (1955). Information Theory in Psychology. Glencoe, Ill: The Free Press.