Response of noctilucent cloud brightness to daily solar variations

P. Dalin1,2, N. Pertsev3, V. Perminov3, A. Dubietis4, A. Zadorozhny5, M. Zalcik6, I. McEachran7, T. McEwan7, K. Černis8, J. Grønne9, T. Taustrup10, O. Hansen9, H. Andersen9, D. Melnikov11, A. Manevich11, V. Romejko12, D. Lifatova13
1Swedish Institute of Space Physics, Box 812, SE-981 28 Kiruna, Sweden
2Space Research Institute RAS, Profsoyuznaya St. 84/32, Moscow, 117997, Russia
3A. M. Obukhov Institute of Atmospheric Physics, RAS, Pyzhevskiy per., 3, Moscow, 119017, Russia
4Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
5Division for Atmospheric Research, Novosibirsk State University, Pirogova Street 2, Novosibirsk, 630090, Russia
6NLC CAN AM Network, #7 14130 80 Street, Edmonton, AB, T5C 1L6, Canada
7NLC NET, 14 Kersland Road, Glengarnock, Ayrshire, KA14 3BA Scotland, UK
8Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
9The Danish Association for NLC Research, Denmark
10The Taustrup Ovesen Cooperation (TOC) Observatory, Århus, Denmark
11Institute of Volcanology and Seismology, RAS, 9 Piip Boulevard, Petropavlovsk-Kamchatsky, 683006, Russia
12The Moscow Association for NLC Research, Kosygina St. 17, Moscow, 119334, Russia
13The Faculty of Physics, M. V. Lomonosov Moscow State University, 1-2, Leninskie Gory, Moscow, 119991, Russia

Tài liệu tham khảo

Ammosov, 2014, Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Space Res., 54, 2518, 10.1016/j.asr.2014.06.007 Beig, 2008, Overview of the temperature response in the mesosphere and lower thermosphere to solar activity, Rev. Geophys., 46 Brasseur, 1984 Bronshten, 1970 Chandran, 2010, Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft: atmospheric gravity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence, J. Geophys. Res., 115 Dalin, 2006, Comparison of long-term Moscow and Danish NLC observations: statistical results, Ann. Geophys., 24, 2841, 10.5194/angeo-24-2841-2006 Dalin, 2008, Ground-based observations of noctilucent clouds with a northern hemisphere network of automated digital cameras, J. Atmos. Sol. Terr. Phys., 70, 1460, 10.1016/j.jastp.2008.04.018 Dalin, 2010, A case study of the evolution of a Kelvin-Helmholtz wave and turbulence in noctilucent clouds, J. Atmos. Sol. Terr. Phys., 72, 1129, 10.1016/j.jastp.2010.06.011 Dalin, 2011, A comparison between ground-based observations of noctilucent clouds and Aura satellite data, J. Atmos. Sol. Terr. Phys., 73, 2097, 10.1016/j.jastp.2011.01.020 DeLand, 2007, Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data, J. Geophys. Res., 112 DeLand, 2015, Updated PMC trends derived from SBUV data, J. Geophys. Res. Atmos., 120, 2140, 10.1002/2014JD022253 Dubietis, 2010, Observations of noctilucent clouds from Lithuania, J. Atmos. Sol. Terr. Phys., 72, 1090, 10.1016/j.jastp.2010.07.004 Dubietis, 2011, Noctilucent clouds: modern ground-based photographic observations by a digital camera network, Appl. Optic., 50, F72, 10.1364/AO.50.000F72 Ebel, 1986, Vertical change of the response to solar activity oscillations with periods around 13 and 27 days in the middle atmosphere, Ann. Geophys., 4, 271 Fechner, 1860 Fiedler, 2011, NLC and the background atmosphere above ALOMAR, Atmos. Chem. Phys., 11, 5701, 10.5194/acp-11-5701-2011 Fleming, 1995, The middle atmospheric response to short and long term solar UV variations: analysis of observations and 2D model results, J. Atmos. Sol. Terr. Phys., 57, 333, 10.1016/0021-9169(94)E0013-D Forbes, 1982, Atmospheric tides: I. Model description and results for the solar diurnal component, J. Geophys. Res., 87, 5222, 10.1029/JA087iA07p05222 Forbes, 1982, Atmospheric tides: II. The solar and lunar semidiurnal components, J. Geophys. Res., 87, 5241, 10.1029/JA087iA07p05241 Gadsden, 1989 Gruzdev, 2009, The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model, Atmos. Chem. Phys., 9, 595, 10.5194/acp-9-595-2009 Hartogh, 2010, Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA, J. Geophys. Res., 115 Hervig, 2006, Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature, J. Atmos. Sol. Terr. Phys., 68, 30, 10.1016/j.jastp.2005.08.010 Hood, 1991, Mesospheric effects of solar ultraviolet variations: further analysis of SME IR ozone Nimbus 7 SAMS temperature data, J. Geophys. Res., 96, 12,989, 10.1029/91JD01177 Kalicinsky, 2016, Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033, 10.5194/acp-16-15033-2016 Kirkwood, 2008, Noctilucent clouds observed from the UK and Denmark – trends and variations over 43 years, Ann. Geophys., 26, 1243, 10.5194/angeo-26-1243-2008 Kirkwood, 2003, Influence of planetary waves on noctilucent clouds occurrence over NW Europe, J. Geophys. Res., 108, 8440, 10.1029/2002JD002356 Lomb, 1976, Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447, 10.1007/BF00648343 Lübken, 2009, Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds, J. Reophys. Res, 114 Marsh, 2007, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112 Merkel, 2008, Observational studies of planetary waves in PMCs and mesospheric temperature measured by SNOE and SABER, J. Geophys. Res., 113 Nicolet, 1981, The photodissociation of water vapor in the mesosphere, J. Geophys. Res., 86, 5203, 10.1029/JC086iC06p05203 Offermann, 2009, Relative intensities of middle atmosphere waves, J. Geophys. Res., 114 Pautet, 2011, Analysis of gravity waves structures visible in noctilucent cloud images, J. Atmos. Sol. Terr. Phys., 73, 2082, 10.1016/j.jastp.2010.06.001 Perminov, 2017, Multi-year behaviour of the midnight OH* temperature according to observations at Zvenigorod over 2000-2016, Adv. Space Res. Pertsev, 2015, Influence of semidiurnal and semimonthly lunar tides on the mesopause as observed in hydroxyl layer and noctilucent clouds characteristics, Geomagn. Aeron., 55, 811, 10.1134/S0016793215060109 Pertsev, 2014, Noctilucent clouds observed from the ground: sensitivity to mesospheric parameters and long-term time series, Earth Planets Space, 66, 98, 10.1186/1880-5981-66-98 Rapp, 2002, Small scale temperature variations in the vicinity of NLC: experimental and model results, J. Geophys. Res., 107, 4392,, 10.1029/2001JD001241 Rauthe, 2006, Lidar temperature measurements of gravity waves over Kühlungsborn (54°N) from 1 to 105 km: a winter-summer comparison, J. Geophys. Res., 111 Robert, 2010, First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency, J. Geophys. Res., 115 Romejko, 2003, Forty years of noctilucent cloud observations near Moscow: database and simple statistics, J. Geophys. Res., 108, 8443,, 10.1029/2002JD002364 Scargle, 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263, 835, 10.1086/160554 Schmidt, 2006, The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Clim., 19, 3903, 10.1175/JCLI3829.1 Shapiro, 2012, Signature of the 27-day solar rotation cycle in mesospheric OH and H2O observed by the Aura Microwave Limb Sounder, Atmos. Chem. Phys., 12, 3181, 10.5194/acp-12-3181-2012 Stevens, 2017, Periodicities of polar mesospheric clouds inferred from a meteorological analysis and forecast system, J. Geophys. Res. Atmos., 122, 4508, 10.1002/2016JD025349 Taylor, 2011, High-latitude gravity wave measurements in noctilucent clouds and polar mesospheric clouds, vol. 2, 93 Tejfel, 1957, Noctilucent clouds, vol. 5, 59 Thomas, 1984, Solar Mesosphere Explorer measurements of polar mesospheric clouds (noctilucent clouds), J. Atmos. Terr. Phys., 46, 819, 10.1016/0021-9169(84)90062-X Thomas, 2015, Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: drivers of polar mesospheric cloud variability, J. Atmos. Sol. Terr. Phys., 134, 56, 10.1016/j.jastp.2015.09.015 Thurairajah, 2017, Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments, J. Atmos. Sol. Terr. Phys., 162, 122, 10.1016/j.jastp.2016.09.008 von Savigny, 2017, First identification of lunar tides in satellite observations of noctilucent clouds, J. Atmos. Sol. Terr. Phys., 162, 116, 10.1016/j.jastp.2016.07.002 von Savigny, 2013, Impact of short term variability on the polar summer mesopause and noctilucent clouds, Chapter 20, 365 Witt, 1962, Height, structure and displacements of noctilucent clouds, Tellus, 14, 1, 10.3402/tellusa.v14i1.9524 Woods, 1997, Solar Lyman α irradiance measurements during two solar cycles, J. Geophys. Res., 102, 8769, 10.1029/96JD03983 Zalcik, 2016, North American noctilucent cloud observations in 1964-77 and 1988-2014: analysis and comparisons, J. Roy. Astron. Soc. Can., 110, 8