Response of noctilucent cloud brightness to daily solar variations
Tài liệu tham khảo
Ammosov, 2014, Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Space Res., 54, 2518, 10.1016/j.asr.2014.06.007
Beig, 2008, Overview of the temperature response in the mesosphere and lower thermosphere to solar activity, Rev. Geophys., 46
Brasseur, 1984
Bronshten, 1970
Chandran, 2010, Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft: atmospheric gravity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence, J. Geophys. Res., 115
Dalin, 2006, Comparison of long-term Moscow and Danish NLC observations: statistical results, Ann. Geophys., 24, 2841, 10.5194/angeo-24-2841-2006
Dalin, 2008, Ground-based observations of noctilucent clouds with a northern hemisphere network of automated digital cameras, J. Atmos. Sol. Terr. Phys., 70, 1460, 10.1016/j.jastp.2008.04.018
Dalin, 2010, A case study of the evolution of a Kelvin-Helmholtz wave and turbulence in noctilucent clouds, J. Atmos. Sol. Terr. Phys., 72, 1129, 10.1016/j.jastp.2010.06.011
Dalin, 2011, A comparison between ground-based observations of noctilucent clouds and Aura satellite data, J. Atmos. Sol. Terr. Phys., 73, 2097, 10.1016/j.jastp.2011.01.020
DeLand, 2007, Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data, J. Geophys. Res., 112
DeLand, 2015, Updated PMC trends derived from SBUV data, J. Geophys. Res. Atmos., 120, 2140, 10.1002/2014JD022253
Dubietis, 2010, Observations of noctilucent clouds from Lithuania, J. Atmos. Sol. Terr. Phys., 72, 1090, 10.1016/j.jastp.2010.07.004
Dubietis, 2011, Noctilucent clouds: modern ground-based photographic observations by a digital camera network, Appl. Optic., 50, F72, 10.1364/AO.50.000F72
Ebel, 1986, Vertical change of the response to solar activity oscillations with periods around 13 and 27 days in the middle atmosphere, Ann. Geophys., 4, 271
Fechner, 1860
Fiedler, 2011, NLC and the background atmosphere above ALOMAR, Atmos. Chem. Phys., 11, 5701, 10.5194/acp-11-5701-2011
Fleming, 1995, The middle atmospheric response to short and long term solar UV variations: analysis of observations and 2D model results, J. Atmos. Sol. Terr. Phys., 57, 333, 10.1016/0021-9169(94)E0013-D
Forbes, 1982, Atmospheric tides: I. Model description and results for the solar diurnal component, J. Geophys. Res., 87, 5222, 10.1029/JA087iA07p05222
Forbes, 1982, Atmospheric tides: II. The solar and lunar semidiurnal components, J. Geophys. Res., 87, 5241, 10.1029/JA087iA07p05241
Gadsden, 1989
Gruzdev, 2009, The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model, Atmos. Chem. Phys., 9, 595, 10.5194/acp-9-595-2009
Hartogh, 2010, Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA, J. Geophys. Res., 115
Hervig, 2006, Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature, J. Atmos. Sol. Terr. Phys., 68, 30, 10.1016/j.jastp.2005.08.010
Hood, 1991, Mesospheric effects of solar ultraviolet variations: further analysis of SME IR ozone Nimbus 7 SAMS temperature data, J. Geophys. Res., 96, 12,989, 10.1029/91JD01177
Kalicinsky, 2016, Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033, 10.5194/acp-16-15033-2016
Kirkwood, 2008, Noctilucent clouds observed from the UK and Denmark – trends and variations over 43 years, Ann. Geophys., 26, 1243, 10.5194/angeo-26-1243-2008
Kirkwood, 2003, Influence of planetary waves on noctilucent clouds occurrence over NW Europe, J. Geophys. Res., 108, 8440, 10.1029/2002JD002356
Lomb, 1976, Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447, 10.1007/BF00648343
Lübken, 2009, Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds, J. Reophys. Res, 114
Marsh, 2007, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112
Merkel, 2008, Observational studies of planetary waves in PMCs and mesospheric temperature measured by SNOE and SABER, J. Geophys. Res., 113
Nicolet, 1981, The photodissociation of water vapor in the mesosphere, J. Geophys. Res., 86, 5203, 10.1029/JC086iC06p05203
Offermann, 2009, Relative intensities of middle atmosphere waves, J. Geophys. Res., 114
Pautet, 2011, Analysis of gravity waves structures visible in noctilucent cloud images, J. Atmos. Sol. Terr. Phys., 73, 2082, 10.1016/j.jastp.2010.06.001
Perminov, 2017, Multi-year behaviour of the midnight OH* temperature according to observations at Zvenigorod over 2000-2016, Adv. Space Res.
Pertsev, 2015, Influence of semidiurnal and semimonthly lunar tides on the mesopause as observed in hydroxyl layer and noctilucent clouds characteristics, Geomagn. Aeron., 55, 811, 10.1134/S0016793215060109
Pertsev, 2014, Noctilucent clouds observed from the ground: sensitivity to mesospheric parameters and long-term time series, Earth Planets Space, 66, 98, 10.1186/1880-5981-66-98
Rapp, 2002, Small scale temperature variations in the vicinity of NLC: experimental and model results, J. Geophys. Res., 107, 4392,, 10.1029/2001JD001241
Rauthe, 2006, Lidar temperature measurements of gravity waves over Kühlungsborn (54°N) from 1 to 105 km: a winter-summer comparison, J. Geophys. Res., 111
Robert, 2010, First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency, J. Geophys. Res., 115
Romejko, 2003, Forty years of noctilucent cloud observations near Moscow: database and simple statistics, J. Geophys. Res., 108, 8443,, 10.1029/2002JD002364
Scargle, 1982, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263, 835, 10.1086/160554
Schmidt, 2006, The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Clim., 19, 3903, 10.1175/JCLI3829.1
Shapiro, 2012, Signature of the 27-day solar rotation cycle in mesospheric OH and H2O observed by the Aura Microwave Limb Sounder, Atmos. Chem. Phys., 12, 3181, 10.5194/acp-12-3181-2012
Stevens, 2017, Periodicities of polar mesospheric clouds inferred from a meteorological analysis and forecast system, J. Geophys. Res. Atmos., 122, 4508, 10.1002/2016JD025349
Taylor, 2011, High-latitude gravity wave measurements in noctilucent clouds and polar mesospheric clouds, vol. 2, 93
Tejfel, 1957, Noctilucent clouds, vol. 5, 59
Thomas, 1984, Solar Mesosphere Explorer measurements of polar mesospheric clouds (noctilucent clouds), J. Atmos. Terr. Phys., 46, 819, 10.1016/0021-9169(84)90062-X
Thomas, 2015, Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: drivers of polar mesospheric cloud variability, J. Atmos. Sol. Terr. Phys., 134, 56, 10.1016/j.jastp.2015.09.015
Thurairajah, 2017, Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments, J. Atmos. Sol. Terr. Phys., 162, 122, 10.1016/j.jastp.2016.09.008
von Savigny, 2017, First identification of lunar tides in satellite observations of noctilucent clouds, J. Atmos. Sol. Terr. Phys., 162, 116, 10.1016/j.jastp.2016.07.002
von Savigny, 2013, Impact of short term variability on the polar summer mesopause and noctilucent clouds, Chapter 20, 365
Witt, 1962, Height, structure and displacements of noctilucent clouds, Tellus, 14, 1, 10.3402/tellusa.v14i1.9524
Woods, 1997, Solar Lyman α irradiance measurements during two solar cycles, J. Geophys. Res., 102, 8769, 10.1029/96JD03983
Zalcik, 2016, North American noctilucent cloud observations in 1964-77 and 1988-2014: analysis and comparisons, J. Roy. Astron. Soc. Can., 110, 8