Response of a hydrothermal system to escalating phreatic unrest: the case of Turrialba and Irazú in Costa Rica (2007–2012)

Earth, Planets and Space - Tập 73 - Trang 1-26 - 2021
D. Rouwet1, R. Mora-Amador2, C. Ramírez3, G. González2,4, E. Baldoni5,6, G. Pecoraino7, S. Inguaggiato7, B. Capaccioni5, F. Lucchi5, C. A. Tranne5
1Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
2Volcanes Sin Fronteras, San José, Costa Rica
3Servicio Geológico Ambiental de Costa Rica (SeGeoAm), San José, Costa Rica
4Università Degli Studi Aldo Moro, Bari, Italy
5BIGEA, Alma Mater Studiorum, Università Di Bologna, Bologna, Italy
6IVAR, Universidade Dos Açores, Ponta Delgada, São Miguel, Portugal
7Istituto Nazionale di Geofisica e Vulcanologia, sezione di Palermo, Palermo, Italy

Tóm tắt

This study presents the first hydrogeochemical model of the hydrothermal systems of Turrialba and Irazú volcanoes in central Costa Rica, manifested as thermal springs, summit crater lakes, and fumarolic degassing at both volcanoes. Our period of observations (2007–2012) coincides with the pre- and early syn-phreatic eruption stages of Turrialba volcano that resumed volcanic unrest since 2004, after almost 140 years of quiescence. Peculiarly, the generally stable Irazú crater lake dropped its level during this reawakening of Turrialba. The isotopic composition of all the discharged fluids reveals their Caribbean meteoric origin. Four groups of thermal springs drain the northern flanks of Turrialba and Irazú volcanoes into two main rivers. Río Sucio (i.e. “dirty river”) is a major rock remover on the North flank of Irazú, mainly fed by the San Cayetano spring group. Instead, one group of thermal springs discharges towards the south of Irazú. All thermal spring waters are of SO4-type (i.e. steam-heated waters), none of the springs has, however, a common hydrothermal end-member. A water mass budget for thermal springs results in an estimated total output flux of 187 ± 37 L/s, with 100 ± 20 L/s accounted for by the San Cayetano springs. Thermal energy release is estimated at 110 ± 22 MW (83.9 ± 16.8 MW by San Cayetano), whereas the total rock mass removal rate by chemical leaching is ~ 3000 m3/year (~ 2400 m3/year by San Cayetano-Río Sucio). Despite Irazú being the currently less active volcano, it is a highly efficient rock remover, which, on the long term can have effects on the stability of the volcanic edifice with potentially hazardous consequences (e.g. flank collapse, landslides, phreatic eruptions). Moreover, the vapor output flux from the Turrialba fumaroles after the onset of phreatic eruptions on 5 January 2010 showed an increase of at least ~ 260 L/s above pre-eruptive background fumarolic vapor fluxes. This extra vapor loss implies that the drying of the summit hydrothermal system of Turrialba could tap deeper than previously thought, and could explain the coincidental disappearance of Irazú’s crater lake in April 2010.

Tài liệu tham khảo

Alpízar Y, Mora-Amador R, González G, Ramírez CJ, Moral MM, Taylor W (2014) Actividad de los volcanes de Costa Rica durante el periodo 2012–2013/Activity of the Costa Rica volcanoes during 2012–2013. Rev Geol Amér Central 51:145–158. https://doi.org/10.15517/rgac.v51i1.16910.a Alvarado GE (2005) Costa Rica: land of volcanoes. EUNED, San José Alvarado GE, Schmincke HU (1994) Stratigraphic and sedimentological aspects of the rain triggered lahars of the 1963–1965 Irazú eruption, Costa Rica. Zentralblat Für Geologieuna Paläontologie 1(1–2):513–550 Alvarado GE, Schmincke HU (2013) The 1723 A.D. violent strombolian and phreatomagmatic eruption at Irazú volcano, Costa Rica (La erupción estromboliana violenta y freatomagmática de 1723 en el volcán Irazú, Costa Rica). Rev Geol Am Central 48:41–61 Alvarado GE, Carr MJ, Turrin, Brent D, Swisher CC, Schmincke HU, Hudnut KW (2006) Recent volcanic history of Irazú volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing. In: Rose WI, Bluth GJS, Carr MJ, Ewert J, Patino LC, Vallance J (eds) Volcanic hazards in Central America. Geol Soc Am Special Pap 412:259–276. https://doi.org/10.1130/2006.2412(14) Alvarado GE, Mora MM, Ulloa A (2013) La caida de “ceniza" provenience del volcano Irazú (Costa Rica) el 8 de diciembre de 1994. Rev Geol Am Central 48:159–168 Alvarado GE, Mele D, Dellino P, de Moor JM, Avard G (2016) Are the ashes from the latest eruptions (2010–2016) at Turrialba volcano (Costa Rica) related to phreatic or phreatomagmatic events? J Volcanol Geotherm Res 327:407–415. https://doi.org/10.1016/j.jvolgeores.2016.09.003 Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE (2007) High water contents in basaltic magmas from Irazú Volcano, Costa Rica. J Volcanol Geotherm Res 168:68–92 Bruijnzeel LA, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25:465–498 Campion R, Martínez-Cruz M, Lecoq T, Caudron C, Pacheco J, Pinardi G, Hemans C, Carn S, Bernard A (2012) Space- and ground-based measurements of sulphur dioxide emissions from Turrialba Volcano (Costa Rica). Bull Volcanol. https://doi.org/10.1007/s00445-012-0631-z Chiodini G, Liccioli C, Vaselli O, Calabrese S, Tassi F, Caliro S, Caselli A, Agusto M, D’Alessandro W (2014) The Domuyo volcanic system: an enormous geothermal resource in Argentine Patagonia. J Volcanol Geotherm Res 274:71–77 Clark SK, Reagan MK, Plank T (1998) Trace element and U-series systematics for 1963–1965 tephras from Irazú Volcano, Costa Rica: implications for magma generation processes and transit times. Geochim Cosmochim Acta 62(15):2689–2699 Clark SK, Reagan MK, Trimble DA (2006) Tephra deposits for the past 2600 years from Irazú volcano, Costa Rica. In: Rose WI, Bluth GJS, Carr MJ, Ewert J, Patino LC, Vallance J (eds) Volcanic hazards in Central America. Geol Soc Am Special Pap 412:225–234. https://doi.org/10.1130/2006.2412(12). Collard N, Taran YA, Peiffer L, Campion R, Jácome-Paz MP (2014) Solute fluxes and geothermal potential of Tacaná volcano-hydrothermal system Mexico-Guatemala. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2014.10.012 Collard N, Peiffer L, Taran Y (2020) Heat and fluid flow dynmics of a stratovolcano: the Tacaná Volcanic Complex. Mexico-Guatemala J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2020.106916 Conde V, Bredemeyer S, Duarte E, Pacheco JF, Miranda S, Galle B, Hansteen TH (2014) SO2 degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012. Int J Earth Sci 103:1983–1998. https://doi.org/10.1007/s00531-013-0958-5 de Moor JM, Aiuppa A, Avard G, Wehrmann H, Dunbar N, Muller C, Tamburello G, Giudice G, Liuzzo M, Moretti R, Conde V, Galle B (2016) Turmoil at Turrialba volcanic (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J Geophys Res Solid Earth. https://doi.org/10.1002/2016JB013150 Delmelle P, Bernard A (2000) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geotherm Res 97:55–75 Delmelle P, Henley RW, Opfergelt S, Detienne M (2015) Summit acid crater lakes and flank instability in composite volcanoes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. IAVCEI series advances in volcanology. Springer, Heidelberg, pp 289–306. https://doi.org/10.1007/978-3-642-36833-2_12 Di Piazza A, Rizzo AL, Barberi F, Carapezza ML, De Astis G, Romano C, Sortino F (2015) Geochemistry of the mantle source and magma feeding system beneath Turrialba volcano, Costa Rica. Lithos 232:319–335. https://doi.org/10.1016/j.lithos.2015.07.012 Fernández M, Mora MF, Barquero RP (1998) Los procesos sísmicos en el volcán Irazú. Rev Geol Amér Central 21:47–59 Gammons CH, Wood SA, Pedrozo F, Varekamp JC, Nelson BJ, Shope CL, Baffico G (2005) Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222:249–267 Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2149–2765 Goldsmith GR, Munóz-Villers E, Holwerda F, McDonnel JJ, Asbjornsen H, Dawson TE (2011) Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology. https://doi.org/10.1002/eco.268 González G, Mora-Amador R, Ramírez Umaña C, Rouwet D, Alpízar Y, Picado C, Mora R (2015) Actividad histórica y análisis de la amenaza del volcán Turrialba, Costa Rica. Rev Geol Amér Central 52:129–149. https://doi.org/10.15517/rgc.v0i52.19033 Heikens A, Sumarti S, van Bergen MJ, Widianarlo B, Fokkert L, Van Leeuwin K, Seinen W (2005) The impact of hyperacid Ijen Crater Lake, risks of excess fluoride to human health. Sci Tot Environ 346:56–69 Holwerda F, Bruijnzeel LA, Munóz-Villers LE, Equihua M, Asbjornsen, (2010) Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. J Hydrol 384:84–96 Ingebritsen SE, Galloway DL, Collard EM, Sorey ML, Mariner RH (2001) Time-variation of hydrothermal discharge at selected sites in western United States: implications for monitoring. J Volcanol Geotherm Res 111:1–23 Kerle N, van Wijck de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua-Investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105:49–63 Kerle N, van Wijck de Vries B, Oppenheimer C (2003) New insights into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua. Bull Volcanol 65:331–345 Löhr A, Bogaard TA, Heikens A, Hendriks MR, Sumarti S, van Bergen MJ, Van Gestel CAM, Van Straalen NM, Vroon PZ, Widianarko B (2005) Natural pollution caused by the extremely acidic crater lake Kawah Ijen, East Java, Indonesia. Environ Sci Pollut Res 12(2):89–95 López DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260:1794–1796 Manville V (2015) Volcano-hydrologic hazards from volcanic lakes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) volcanic lakes. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_2 Martini F, Tassi F, Vaselli O, Del Potro R, Martínez M, Van der Laat R, Fernández E (2010) Geophysical, geochemical and geodetical signals of reawakening at Turrialba volcano (Costa Rica) after almost 150 years of quiescence. J Volcanol Geotherm Res 198:416–432 Mick E, Stix J, de Moor JM, Avard G (2021) Hydrothermal alteration and sealing at Turrialba volcano, Costa Rica, as a mechanism for phreatic eruption triggering. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2021.107297 Moore JN, Christenson BW, Allis RG, Browne PRL, Lutz SJ (2004) The mineralogical consequences and behavior of descending acid-sulfate waters: An example from the Karaha - Telaga Bodas geothermal system, Indonesia. Can Miner 42:1483–1499 Moore JN, Allis RG, Nemcock M, Powell TS, Bruton CJ, Wanamaker P, Raharjo IB, Norman DI (2008) The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. Am J Sci 308(1):1–48 Mora-Amador RA, Ramírez C, Fernández M (2004) La actividad de los volcanes de la Cordillera Central, Costa Rica, entre 1998–2002. Rev Geol Amér Central 30:189–197 Mora-Amador RA, Rouwet D, Vargas P, Oppenheimer C (2019) The extraordinary sulfur volcanism of Poás from to. In: Tassi F, Vaselli O, Mora-Amador RA (eds) Poás Volcano, active volcanoes of the world. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-02156-0_3 Moussalam Y, Peters N, Ramírez C, Oppenheimer C, Aiuppa A, Giudice G (2014) Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica. Solid Earth 5:1341–1350. https://doi.org/10.5194/se-5-1341-2014 Muller C, Pacheco J, Angarita M, Alvarado GE, Sánchez B, Avard G (2020) El deslizamiento de las Torres del Irazú del 2020 (Costa Rica): antecedentes, colapso y situación actual. Internal report OVSICORI-UNA, CNE. pp 34 http://www.ovsicori.una.ac.cr/index.php/vulcanologia/deslizamiento-volcan-irazu Munóz-Villers LE, Holwerda F, Gomez-Cárdenas Mm Equinhua M, Asbjornsen H, Bruijnzeel LA, Marín-Castro BE, Tobón C (2012) Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. J Hydrol 462–463:53–66 Murata KJ, Dóndoli C, Sáenz R (1966) The 1963–65 eruption of Irazú Volcano, Costa Rica (the period of March 1963 to October 1964). Bull Volcanol 29:765–796 Palandri JL, Reed M (2001) Reconstruction in situ composition of sedimentary formation waters. Geochim Cosmochim Acta 65:1741–1767 Pang ZH, Reed M (1998) Theoretical chemical thermometry on geothermal waters: problems and methods. Geochim Cosmochim Acta 62(6):1083–1091 Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water Resour Investig Rep 312:99–4259 Parnell RA Jr, Burke KJ (1990) Impacts of acid emissions from Nevado del Ruíz volcano, Colombia, on selected terrestrial and aquatic ecosystems. J Volcanol Geotherm Res 42:69–88 Pavanelli N (2006) La pericolosità del Vulcano Irazú (Costa Rica): dall’attività eruttiva ai movimenti di massa. PhD Thesis, Department of Earth Science, University of Florence, Florence, Italy Peiffer L, Rouwet D, Taran YA (2015) Fluid geochemistry of El Chichón volcano-hydrothermal system. In: Scolamacchia T (ed) Macías JL. Active volcanoes of Chiapas, El Chichón and Tacaná, pp 77–96. https://doi.org/10.1007/978-3-642-25890-9_4 Ramírez R, Cordero C, Alvarado GE (2013) Variaciones y características en los cambios de nivel de la Laguna cratérica del volcán Irazú (1965–2012), Costa Rica. Rev Geol Amér Central 48:141–157 Reagan MK, Gill JB (1989) Coexisting calcalkaline and high-niobium basalts from Turrialba Volcano, Costa Rica: implications for residual titanates in arc magma sources. J Geophys Res 94(B4):4619–4633 Reagan M, Duarte E, Soto GJ, Fernández E (2006) The eruptive history of Turrialba volcano, Costa Rica, and potential hazards from future eruptions. In: Rose WI, Bluth GJS, Carr MJ, Ewert J, Patino LC, Vallance J (eds) Volcanic hazards in Central America. Geol Soc Am Special Pap 412:235–257. https://doi.org/10.1130/2006.2412 (13) Reed M (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. Geochim Cosmochim Acta 46:513–528 Reid ME (2004) Massive collapse of volcanic edifices triggered by hydrothermal pressurization. Geology 32:373–376 Rizzo AL, Di Piazza A, de Moor JM, Alvarado GE, Avard G, Carezza ML, Mora MM (2017) Eruptive activity at Turrialba volcano (Costa Rica): Inferences from 3He/4He in fumarole gases and chemistry of the products ejected during 2014 and 2015. Geochem Geophys Geosyst 17:4478–4494. https://doi.org/10.1002/2016GC006525 Romano P, Liotta M (2018) Using and abusing Giggenbach ternary Na-K-Mg diagram. Chem Geol 541:119577. https://doi.org/10.1016/j.chemgeo.2020.119577 Rouwet D (2011) A photographic method for detailing the morphology of the floor of a dynamic crater lake: the El Chichón case (Chiapas, Mexico). Limnology 12:225–233. https://doi.org/10.1007/s10201-011-0343-7 Rouwet D (2021) Volcanic lake dynamics and related hazards. In: Papale P (ed) Forecasting and planning for volcanic hazards, risks and disasters. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-818082-2.00011-1 Rouwet D, Inguaggiato S, Taran Y, Varley N, Santiago Santiago JA (2009) Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico-Guatemala): implication for volcanic surveillance. Bull Volcanol 71:319–335. https://doi.org/10.1007/s00445-008-0226-x Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014a) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res 272:78–97. https://doi.org/10.1016/j.jvolgeores.2013.12.009 Rouwet D, Sandri L, Marzocchi W, Gottsmann J, Selva J, Tonini R, Papale P (2014b) Recognizing and tracking volcanic hazards related to non-magmatic unrest: a review. J Appl Volcanol 3:17. https://doi.org/10.1186/s13617-014-0017-3 Rouwet D, Mora-Amador R, Ramírez-Umaña C, González G, Lucchi F, Forni F, Sulpizio R, Baldoni E, Alpízar-Segura Y, Tranne CA (2015) First documentation of the ongoing phreatic-strombolian eruptions of Turrialba volcano (Costa Rica). Abstract 26th IUGG General Assembly, 3746 Rouwet D, Mora-Amador R, Ramírez-Umaña CJ, González G, Inguaggiato S (2017) Dynamic fluid recycling at Laguna Caliente (Poás, Costa Rica) before and during the 2006-ongoing phreatic eruption cycle (2005–10). In: Ohba T, Capaccioni B, Caudron C (Eds), Geochemistry and geophysics of active crater lakes. Geol Soc London Special Publication pp 437. https://doi.org/10.1144/SP437.11 Rowe GL Jr, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51 Rowe GL Jr, Brantley SL, Fernández JF, Borgia A (1995) The chemical and hydrologic structure of Poás volcano, Costa Rica. J Volcanol Geotherm Res 64:233–267 Sanford WE, Konikow LF, Rowe GL Jr, Brantley SL (1995) Groundwater transport of crater-lake brine at Poás Volcano, Costa Rica. J Volcanol Geotherm Res 64:269–293 Stix J, de Moor JM (2018) Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth Planets Space 70:83. https://doi.org/10.1186/s40623-018-0855-z Taran Y, Kalacheva E (2020) Acid sulfate-chloride volcanic waters: Formation and potential for monitoring of volcanic activity. J Volcanol Geotherm Res 405:107036. https://doi.org/10.1016/j.jvolgeores.2020.107036 Taran YA, Peiffer L (2009) Hydrology, hydrochemistry and geothermal potential of El Chichón volcano-hydrothermal system, Mexico. Geothermics 38:370–378 Taran YA, Pokrovsky BG, Rubik YM (1989) Isotopic composition and origin of water from andesitic magma. Doll Ac Sci USSR 304:440–443 Taran YA, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. Implications for monitoring of the volcanic activity. J Volcanol Geotherm Res 178:224–236 Ulloa A, Campos-Fernández CS, Rojas L (2013) Cueva los minerales, Volcán Irazú, Costa Rica: descripción, mineralogía y origen. Rev Geol Amér Centr 48:169–187 van Hinsberg V, Berlo K, Sumarti S, van Bergen MJ, Williams-Jones A (2010) Extreme alteration by hyperacidic brines at Kawah Ijen volcanic, East Java, Indonesia: II Metasomatic imprint and element fluxes. J Volcanol Geotherm Res 196:169–184 van Rotterdam-Los AMD, Vriend SP, van Bergen MJ, Van Gaans PFM (2008) The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagus, Java, Indonesia. J Geochem Explor 96:53–68 van Wijck de Vries B, Kerle N, Petley DN (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170 Varekamp JC (2008) The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. J Volcanol Geotherm Res 178:184–196 Varekamp JC (2015) The chemical composition and evolution of volcanic lakes. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic Lakes, IAVCEI Series Advances in Volcanology. Springer, Heidelberg, pp 93–123. https://doi.org/10.1007/978-3-642-36833-2_4 Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. J Volcanol Geothermal Res 97:309–327 Varekamp JC, Ouimette AP, Herman SW, Delpino D, Bermúdez A (2001) The 1990–2000 eruptions of Copahue, Argentine: a “bee-hive volcano" in turmoil. Geology 29:1059–1062 Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermúdez A, Delfino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:208–220 Vaselli O, Tassi F, Duarte E, Fernández E, Poreda RJ, Delgado Huertas A (2009) Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bull Volcanol. https://doi.org/10.1007/s00445-009-0332-4 Voight B, Ellsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31 Voight B, Janda RJ, Glicken H, Douglas PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273