Response of NADPH-Diaphorase-Exhibiting Neurons in the Medullar Reticular Formation to High Spinal Cord Injury

Springer Science and Business Media LLC - Tập 24 - Trang 865-872 - 2004
Karolina Kucharova1, Pavol Jalc1, Jozef Radonak2, Jozef Marsala1
1Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovak Republic
2Department of Surgery School of Medicine, P. J. Šafárik University, Košice, Slovak Republic

Tóm tắt

1. The effect of hemisection of the cervical spinal cord on NADPH-diaphorase staining in the reticular nuclei of the rabbit medulla was investigated using histochemical technique. 2. A quantitative assessment of somal and neuropil NADPH-diaphorase staining was made by an image analyzer in a selected area of each reticular nucleus of the rabbit medulla. 3. On the 7th postsurgery day, the highest up-regulation of somatic NADPH-diapho- rase staining was observed in regions regulating cardiorespiratory processes; however, the highest increase of neuropil NADPH-diaphorase staining was found in the reticular nuclei modulating the tonus of postural muscles. 4. The degeneration of non-NADPH-diaphorase-stained neurons was detected throughout the reticular formation of the medulla, but the extent of neuronal death did not correlate with the up-regulation of the NADPH-diaphorase staining in the reticular nuclei of the medulla. 5. The findings provide evidence that NADPH-diaphorase-exhibiting neurons are refractory to the hemisection of the cervical spinal cord and that the neuronal up-regulation of NADPH-diaphorase at the medullar level is probably not a causative factor leading to the death of the reticulospinal neurons.

Tài liệu tham khảo

Akira, T., Henry, D., Baldwin, R. A., and Wasterlain, C. G. (1994). Nitric oxide participates in excitotoxic mechanisms induced by chemical hypoxia. Brain Res. 645:285–290. Bidmon, H. J., Emde, B., Kowalski, T., Schmitt, M., Mayer, B., Kato, K., Asayama, K., Witte, O. W., and Zilles, K. (2001). Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: Evidence for direct and indirect mechanisms towards their resistance to neuropathology. J. Chem. Neuroanat. 22:167–184. Bredt, D. S., and Snyder, S. H. (1992). Nitric oxide, a novel neuronal messenger. Neuron 8:3–11. Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., Bird, E. D., and Martin, J. B. (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563. Gidday, J. M., Shah, A. R., Maceren, R. G., Wang, Q., Pelligrino, D. A., Holtzman, D. M., and Park, T. S. (1999). Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J. Cereb. Blood. Flow Metab 19:331–340. Gobel, U., Schrock, H., Seller, H., and Kuschinsky, W. (1990). Glucose utilization, blood flow and capillary density in the ventrolateral medulla of the rat. Pflüg. Arch. 416:477–480. Granata, A. R., and Ruggiero, D. A. (1998). Evidence of disynaptic projections from the rostral ventrolateral medulla to the thoracic spinal cord. Brain Res. 781:329–334. Hill, C. E., Beattie, M. S., and Bresnahan, J. C. (2001). Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp. Neurol. 171:153–169. Iadecola, C., Beitz, A. J., Renno, W., Xu, X., Mayer, B., a Zhang, F. (1993). Nitric oxide synthasecontaining neural processes on large cerebral arteries and cerebral microvessels. Brain Res. 606:148–155. Jin, Y., Fischer, I., Tessler, A., and Houle, J. D. (2002). Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol. 177:265–275. Kiss, J. P., and Vizi, E. S. (2001). Nitric oxide: A novel link between synaptic and nonsynaptic transmission. Trends Neurosci. 24:211–215. Koh, J. Y., Peters, S., and Choi, D. W. (1986). Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science 234:73–76. Kucharova, K., Fercakova, A., Jalc, P., and Marsala, J. (2001). NADPH diaphorase activity in the primary sensory neurons following peripheral axotomy. Biologia 56:321–328. Marsala, J., Kluchova, D., and Marsala, M. (1997). Spinal cord gray matter layers rich in NADPH diaphorase-positivite neurons are refractory to ischemia-reperfusion-induced injury: A histochemical and silver impregnation study in rabbit. Exp. Neurol. 145:165–179. Marsala, J., Vanický, I., Maršala, M., Jalč, P., Orendáčová, J., and Taira, Y. (1998). Reduced nicotinamide adenine dinucleotide phosphate diaphorase in the spinal cord of dogs. Neurosci. 85:847–862. Marsala, J., Lukacova, N., Cizkova, D., Kafka, J., Katsube, N., Kucharova, K., a Marsala, M. (2002). The case for the bulbospinal nitric oxide synthase-immunoreactive pathway in the dog. Exp. Neurol. 177:115–132. Mathias, C. J. (1987). Role of the central nervous system in human secondary hypertension. J. Cardiovasc. Pharmacol. 10:S93–99. Munakata, M., Kameyama, J., Nunokawa, T., Ito, N., and Yoshinaga, K. (2001). Altered Mayer wave and baroreflex profiles in high spinal cord injury. Am. J. Hypertens. 14:141–148. Nakashima, M. N., Yamashita, K., Kataoka, Y., Yamashita, Y. S., and Niwa, M. (1995). Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following focal cerebral ischemia. Cell. Mol. Neurobiol. 15:341–349. Nantwi, K. D., and Goshgarian, H. G. (1998). Effects of chronic systemic theophylline injections on recovery of hemidiaphragmatic function after cervical spinal cord injury in adult rats. Brain Res. 789:126–129. Nantwi, K. D., and Goshgarian, H. G. (2001). Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats. Exp. Neurol. 168:123–134. Nathan, P. W., Smith, M., and Deacon, P. (1996). Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119:1809–1833. Poynton, A. R., O’Farrell, D. A., Shannon, F., Murray, P., McManus, F., and Walsh, M. G. (1997). An evaluation of the factors affecting neurological recovery following spinal cord injury. Injury 28:545–8. Prast, H., and Philippu, A. (2001). Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 64:51–68. Richerson, G. B., Wang, W., Tiwari, J., and Bradley, S. R. (2001). Chemosensitivity of serotonergic neurons in the rostral ventral medulla. Res. Physiol. 129:175–189. Saito, S., Kidd, G. J., Trapp, B. D., Dawson, T. M., Bredt, D. S., Wilson, D. A., Traystmann, R. J., Snyder, S. H., and Hanley, D. F. (1994). Rat spinal cord neurons contain nitric oxide synthase. Neurosci. 59:447–756. Xu, M., Ng, Y. K., Leong, S. K. (2000). Neuroprotective and neurodestructive functions of nitric oxide after spinal cord hemisection. Exp. Neurol. 161:472–480.