Response diversity determines the resilience of ecosystems to environmental change

Biological Reviews - Tập 88 Số 2 - Trang 349-364 - 2013
Akira Mori1, Takuya Furukawa1, Takehiro Sasaki2
1Graduate School of Environment and Information Sciences Yokohama National University 79‐7 Tokiwadai, Hodogaya Yokohama 240‐8501 Japan
2Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563, Japan

Tóm tắt

ABSTRACTA growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. ‘species richness’) may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include ‘response diversity’, describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio‐temporal complementarity among species, leading to long‐term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change.

Từ khóa


Tài liệu tham khảo

10.1111/j.0021-8901.2004.00934.x

10.1073/pnas.0904512106

10.1111/j.1654-1103.2003.tb02173.x

10.1111/j.1461-0248.2006.00963.x

10.1579/0044-7447-32.6.389

Berkes F., 2003, Navigating Social‐Ecological Systems. Building Resilience for Complexity and Change

10.1073/pnas.0704103105

10.1111/j.1461-0248.2012.01758.x

10.1016/j.tree.2011.06.011

10.1073/pnas.94.17.9171

10.1111/j.1365-2664.2011.02056.x

10.1073/pnas.0805962105

10.1111/j.1365-2664.2011.02048.x

10.1038/nature11148

10.3732/ajb.1000364

10.1073/pnas.0709069104

Carpenter S. R., 2006, Scenarios for ecosystem services: an overview, Ecology and Society, 11

10.1641/0006-3568(2001)051[0451:CWCEAS]2.0.CO;2

Chapin F. S. I., 2009, Principles of Ecosystem Stewardship. Resilience‐based Natural Resource Management in a Changing World

10.2307/1940405

10.1890/03-5272

10.1098/rstb.2008.0317

10.1016/S0169-5347(01)02283-2

10.1371/journal.pbio.0040277

10.1073/pnas.0704716104

10.1073/pnas.1017993108

10.1890/070195

10.1111/j.1461-0248.2005.00725.x

10.1093/acprof:oso/9780199547951.003.0005

10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2

10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2

10.1073/pnas.1109326109

10.1098/rspb.2006.0351

10.1111/j.1461-0248.2008.01255.x

10.1146/annurev.ecolsys.35.021103.105711

10.1146/annurev.ecolsys.39.110707.173349

10.1046/j.1365-2745.1998.00306.x

Gunderson L. H., 2009, Foundation of Ecological Resilience

10.1111/j.1461-0248.2011.01679.x

10.1046/j.1365-2745.1999.00353.x

10.1038/nature05947

10.1890/09-1162.1

10.1890/07-1053.1

10.1111/j.1461-0248.2009.01388.x

10.1007/s10021-009-9291-z

10.1146/annurev.es.04.110173.000245

10.1038/nature11118

10.1890/04-0922

Horn H. S., 1971, The Adaptive Geometry of Trees

10.1038/nature10282

10.1111/j.0030-1299.2008.16692.x

10.1111/j.1461-0248.2009.01299.x

10.1038/nature02515

10.1111/j.1600-0706.2011.19375.x

10.1073/pnas.1118276108

10.1111/j.1365-2486.2011.02451.x

Küppers M., 1989, Ecological significance of aboveground architectural patterns in woody plants: a question of cost–benefit relationships, Trends in Ecology & Evolution, 5, 375, 10.1016/0169-5347(89)90103-1

10.1890/08-2244.1

10.1111/j.1461-0248.2009.01403.x

10.1111/j.1461-0248.2012.01852.x

10.1111/j.1365-2745.2010.01753.x

10.1890/100106

10.1111/j.1365-2656.2009.01586.x

10.1111/j.1461-0248.2004.00608.x

10.1016/j.ppees.2011.10.002

10.1111/j.0030-1299.2004.12685.x

10.1126/science.1064088

10.1038/442245a

10.2307/1929601

10.1016/j.tree.2011.08.006

10.1126/science.1215442

10.1111/j.1466-8238.2010.00532.x

10.1016/j.tree.2006.02.002

10.1890/0012-9658(2000)081[0361:BDCATD]2.0.CO;2

10.1111/j.1365-2745.2009.01630.x

10.1111/j.1461-0248.2005.00731.x

10.1111/j.1365-2664.2010.01956.x

10.1093/treephys/28.5.815

10.1093/treephys/24.6.661

10.1111/j.1523-1739.1998.96379.x

10.1093/acprof:oso/9780199547951.001.0001

10.1126/science.1215855

10.1046/j.1461-0248.2003.00471.x

10.1086/422204

10.1046/j.1469-8137.2003.00712.x

10.1111/j.0022-0477.2004.00928.x

10.1890/100212

10.1111/j.1365-2656.2007.01271.x

10.1111/j.1461-0248.2006.00924.x

10.1007/s100219900002

10.1016/j.biocon.2008.03.022

10.2307/2656927

10.1126/science.1217909

10.1007/BF00317383

10.1016/j.tree.2009.03.018

10.1126/science.287.5459.1770

10.1007/s00442-011-1916-1

10.1111/j.1365-2494.2012.00862.x

10.1890/08-0144.1

10.1890/08-1850.1

10.1016/j.tree.2003.09.002

10.1016/j.tree.2006.05.007

10.1111/j.1365-2745.2011.01949.x

10.1046/j.1461-0248.2003.00454.x

10.1146/annurev.ecolsys.36.102003.152636

10.1016/j.tree.2008.11.012

10.1111/j.1365-2486.2008.01557.x

10.1007/s10531-005-6232-9

10.1073/pnas.091093198

10.1073/pnas.1208240109

10.1038/nature04742

10.1111/j.1461-0248.2005.00782.x

10.1890/07-0455.1

10.1111/j.1469-185X.2011.00216.x

UNEP, 2009, Ecosystem Management Programme: A New Approach to Sustainability. Division of Environmental Policy Implementation

10.1016/j.tree.2011.11.014

10.1046/j.1523-1739.1992.610018.x

10.1046/j.1523-1739.1995.09040747.x

Walker B., 2002, Resilience management in social‐ecological systems: a working hypothesis for a participatory approach, Conservation Ecology, 6, 10.5751/ES-00356-060114

10.1007/s100219900062

10.2307/1941449

10.1098/rspb.2008.0709

10.1890/03-3050

10.1073/pnas.96.4.1463

10.1126/science.1102643

10.1073/pnas.0906829107

10.1111/j.1365-2745.2011.01944.x