Respiratory responses to microinjections of leptin into the solitary tract nucleus

Springer Science and Business Media LLC - Tập 39 - Trang 231-240 - 2009
A. N. Inyushkin, E. M. Inyushkina1, N. A. Merkulova1
1Samara State University, Samara, Russia

Tóm tắt

The regulatory peptide leptin has a respiratory stimulating effect along with its well known hypothalamic effects. The present study, performed on anesthetized rats, addressed respiratory responses to microinjections of 10−10−10−4 M leptin into the solitary tract nucleus, which contains a high concentration of leptin receptors. Injections of 10−8−10−4 M leptin led to stimulation of respiration, inducing a dose-dependent increase in the level of pulmonary ventilation and an increase in respiratory volume, accompanied by an increase in bioelectrical activity in the inspiratory muscles; 10−6 M leptin also induced a transient increase in respiratory rate due to shortening of inhalation and exhalation. A characteristic feature of the response was the appearance of “sighs” – deep, prolonged inhalations accompanied by increased volley activity on the electromyograms of the inspiratory muscles and lengthening of the subsequent intervolley interval. These leptin effects, along with data on the high concentrations of specific leptin receptors (ObRb) in the solitary tract nucleus, suggested that endogenous leptin has a role in controlling respiration at the level of the dorsal segment of the respiratory center.

Tài liệu tham khảo

E. N. Glazkova and A. N. Inyushkin, “Respiratory reactions to microinjection of bombesin into the solitary tract nucleus and their mechanisms,” Ros. Fiziol. Zh. im. I. M. Sechenova, 91, No. 5, 521–529 (2005). A. N. Inyushkin, “Respiratory and hemodynamic reactions in rats to microinjection of opioids into the solitary tract nucleus,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 3, 112–121 (1997). A. N. Inyushkin and N. A. Merkulova, “Effects of microinjection of thyroliberin into the solitary tract nucleus area on measures of respiration and blood circulation,” Ros. Fiziol. Zh. im. I. M. Sechenova, 79, No. 11, 52–58 (1994). W. A. Banks, “The many lives of leptin,” Peptides, 25, 331–338 (2004). A. L. Bianchi, M. Denavit-Saubie, and J. Champagnat, “Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters,” Physiol. Rev., 75, 1–45 (1995). M. Buyse, M.-L. Ovesjo, H. Goiot, S. Guilmeau, G. Peranzi, L. Moizo, F. Walker, M. J. M. Lewin, B. Mesiter, and A. Bado, “Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve,” Eur. J. Neurosci., 14, 64–72 (2001). V. C. Chitravanshi, A. Kachroo, and H. N. Sapru, “A midline area in the nucleus commissuralis of NTS mediates the phrenic nerve responses to carotid chemoreceptor stimulation,” Brain Res., 662, 127–133 (1994). C. F. Elias, J. F. Kelly, C. E. Lee, R. S. Ahima, D. J. Brucker, C. B. Saper, and J. K. Elmquist, “Chemical characterization of leptin-activated neurons in the rat brain,” J. Comp. Neurol., 423, 261–281 (2000). K. L. J. Ellacott, I. G. Halatchev, and R. D. Cone, “Characterization of leptin-responsive neurons in the caudal brainstem,” Endocrinol., 147, 3190–3195 (2006). J. K. Elquist and J. S. Filer, “The fat-brain axis enters a new dimension,” Science, 304, 63–64 (2004). J. Florez, A. Mediavilla, and A. Pazos, “Respiratory effects of β-endorphin, D-Ala2-metenkephalinamide, and metenkephalin injected into the lateral ventricle and the pontomedullary subarachnoid space,” Brain Res., 199, 197–206 (1980). J. M. Friedman and J. L. Halaas, “Leptin and the regulation of body weight in mammals,” Nature, 395, 763–770 (1998). F. J. Golder, P. W. Davenport, R. D. Johnson, P. J. Reier, and D. C. Bolser, “Augmented breath phase volume and timing relationships in the anesthetized rat,” Neurosci. Lett., 373, 89–93 (2005). M. A. Haxhiu, J. Mitra, V. E. Lunteren, N. R. Prabhakar, and N. S. Cherniack, “Influence of central chemoreceptor afferent inputs on respiratory muscle activity,” Amer. J. Physiol., 249, R266–R273 (1985). T. Hosai, T. Kawagishi, Y. Okuma, J. Tanaka, and Y. Nomura, “Brain stem is a direct target for leptin's action in the central nervous system,” Endocrinol., 143, 3498–3504 (2002). L. Huo, H. J. Grill, and C. Bjorbaek, “Divergent regulation of proopiomelanocorum neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus,” Diabetes, 55, 567–573 (2006). L. Huo, L. Maeng, C. Bjorbaek, and H. J. Grill, “Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin,” Endocrinol., 148, 2189–2197 (2007). S. P. Lieske, M. Thoby-Brisson, P. Telgkamp, and J. M. Ramirez, “Reconfiguration of the neural network controlling multiple breathing patters: eupnea, sighs and gasps,” Nature Neurosci., 3, No. 6, 600–607 (2000). J. G. Mercer, K. M. Moar, P. A. Findlay, N. Hoggard, and C. L. Adam, “Association of leptin receptor (Ob-Rb), NPY and GLP-1 gene expression in the ovine and murine brainstem,” Regulat. Pept., 75-76, 271–278 (1998). J. G. Mercer, K. M. Hoar, and N. Hoggard, “Localization of leptin receptor (Ob-R) messenger ribonucleic acid in the rodent hindbrain,” Endocrinol., 139, 29–34 (1998). R. A. Mitchell, H. H. Loeschcke, and N. H. Massion, “Respiratory responses mediated through superficial chemosensitive areas on the medulla,” J. Appl. Physiol., 18, No. 3, 523–533 (1963). H. Munzberg, M. Bjornholm, S. H. Bates, and M. G. Myers, “Leptin receptor action and mechanisms of leptin resistance,” Cell. Mol. Life Sci., 62, 642–652 (2005). C. P. O'Donnell, S. D. Schaub, A. S. Haines, D. I. Berkowitz, C. G. Tankersley, A. R. Schwartz, and P. L. Smith, “Leptin prevents respiratory depression in obesity,” Amer. J. Respir. Crit. Care Med., 159, 1477–1484 (1999). C. P. O'Donnell, C. G. Tankersley, V. Y. Polotsky, A. R. Schwartz, and P. L. Smith, “Leptin, obesity, and respiratory function,” Respirat. Physiol., 119, 173–180 (2000). K. Parisian, P. Wages, A. Smith, J. Jarosz, A. Hewitt, J. C. Leiter, and J. S. Erlichman, “Ventilatory effects of gap junction blockade in the NTS in awake rats,” Respirat. Physiol. Neurobiol., 142, 127–143 (2004). V. Y. Polotsky, M. C. Smaldone, M. T. Scharf, J. Li, C. G. Tankersley, P. L. Smith, A. R. Schwartz, and C. P. O'Donnell, “Impact of interrupted leptin pathways on respiratory control,” J. Appl. Physiol., 96, 991–998 (2004). V. Y. Polotsky, J. A. Wilson, A. S. Haines, M. T. Scharf, S. E. Soutiere, C. G. Tankersley, P. L. Smith, A. R. Schwartz, and C. P. O'Donnell, “The impact of insulin-dependent diabetes on ventilatory control in the mouse,” Amer. J. Respirat. Crit. Care Med., 163, 624–632 (2001). S. Shioda, H. Funahashi, S. Nakajo, T. Yada, O. Maruta, and Y. Nakai, “Immunohistochemical localization of leptin receptor in the brain,” Neurosci. Lett., 243, 41–44 (1998). S. Soltysik and P. Jelen, “In rats, sighs correlate with relief,” Physiol. Behav., 85, 598–602 (2005). D. F. Speck and J. L. Feldman, “The effects of microstimulation and microlesions in the ventral and dorsal respiratory groups in medulla of cat,” J. Neurosci., 2, 744–757 (1982). C. G. Tankersley, S. Kleeberger, B. Russ, A. R. Schwartz, and P. Smith, “Modified control of breathing in genetically obese (ob/ob) mice,” J. Appl. Physiol., 81, 716–723, (1996). C. G. Tankersley, C. P. O'Donnell, M. J. Daood, J. F. Watchko, W. Mitzner, A. Schwartz, and P. Smith, “Leptin attenuates respiratory complications associated with the obese phenotype,” J. Appl. Physiol., 85, 2261–2269 (1998). J. Wu, H. Hu, W. Shen, and C. Jiang, “Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats,” J. Membrane Biol., 197, 179–191 (2004). Y. Zhang, R. Proenca, M. Maffel, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, 372, 425–432 (1994).