Resource allocation and interference management in OFDMA-based VLC networks

Physical Communication - Tập 31 - Trang 169-180 - 2018
Marwan Hammouda1, Anna Maria Vegni2, Harald Haas3, Jürgen Peissig1
1Institute of Communications Technology, Leibniz Universität Hannover, 30167 Hannover, Germany
2Department of Engineering, Roma TRE University, 00146 Roma, Italy
3Institute for Digital Communications, Li-Fi Research and Development Centre, The University of Edinburgh, Edinburgh, EH9 3JL, UK

Tài liệu tham khảo

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019 White Paper, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html. S. Haykin, Cognitive radio: brain-empowered wireless communications, 23 (2) (2005) 201–220. Rappaport, 2013, Millimeter wave mobile communications for 5G cellular: It will work!, IEEE Access, 1, 335, 10.1109/ACCESS.2013.2260813 V. Pohl, V. Jungnickel, C. Von Helmolt, A channel model for wireless infrared communication, in: Proc. IEEE PIMRC, 2000, pp. 297–303. Tsonev, 2013 M.Z. Afgani, H. Haas, H. Elgala, D. Knipp, Visible light communication using OFDM, in: Proc. 2nd Int. IEEE/Create-Net Conf. Testbeds Res. Infrastruct. Develop. Netw. Commun, 2006, pp. 6–pp. H. Elgala, R. Mesleh, H. Haas, Indoor optical wireless communication: potential and state-of-the-art, 49 (9) (2011) 56–62. Kahn, 1997, Wireless infrared communications, Proc. IEEE, 85, 265, 10.1109/5.554222 T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using LED lights, 50 (1) (2004) 100–107. V. Jungnickel, et al. A European view on the next generation optical wireless communication standard, in: Proc. IEEE Conf. Standards for Commun. and Netw., CSCN, 2015, pp. 106–111. Dimitrov, 2015 Elganimi, 2013, Performance comparison between OOK, PPM and pam modulation schemes for free space optical (FSO) communication systems: analytical study, Int. J. Comput. Appl., 79, 22 J. Armstrong, OFDM for optical communications, 27 (3) (2009) 189–204. S. Dimitrov, S. Sinanovic, H. Haas, Signal shaping and modulation for optical wireless communication 30(9) (2012) 1319–1328. Mesleh, 2011, On the performance of different OFDM based optical wireless communication systems, IEEE J. Opt. Commun. Netw., 3, 620, 10.1364/JOCN.3.000620 Wilson, 2011, Scheduling methods for multi-user optical wireless asymmetrically-clipped OFDM, J. Commun. Netw., 13, 655, 10.1109/JCN.2011.6157482 D. Bykhovsky, S. Arnon, Multiple access resource allocation in visible light communication systems, 32 (8) (2014) 1594–1600. Mondal, 2014, SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system, Wirel. Pers. Commun., 78, 1935, 10.1007/s11277-014-2054-y Le, 2015, Resource allocation for multichannel broadcasting visible light communication, Opt. Commun., 355, 451, 10.1016/j.optcom.2015.07.006 Jin, 2016, Resource allocation under delay-guarantee constraints for visible-light communication, IEEE Access, 4, 7301, 10.1109/ACCESS.2016.2564298 M. Biagi, S. Pergoloni, A.M. Vegni, AST: A framework to localize, access, schedule, and transmit in indoor VLC systems 33(9) (2015) 1872–1887. Chowdhury, 2014, Dynamic channel allocation for class-based QoS provisioning and call admission in visible light communication, Arab. J. Sci. Eng., 39, 1007, 10.1007/s13369-013-0680-4 Ghimire, 2012, Self-organising interference coordination in optical wireless networks, EURASIP J. Wirel. Commun. Netw., 2012, 1, 10.1186/1687-1499-2012-131 Chen, 2015, Fractional frequency reuse in DCO-OFDM-based optical attocell networks, J. Lightwave Technol., 33, 3986, 10.1109/JLT.2015.2458325 Kazemi, 2016, Downlink cooperation with fractional frequency reuse in DCO-OFDMA optical attocell networks, 1 Kazemi, 2016, Spectral efficient cooperative downlink transmission schemes for DCO-OFDM-based optical attocell networks, 1 Cui, 2013, Performance of indoor optical femtocell by visible light communication, Opt. Commun., 298, 59, 10.1016/j.optcom.2013.02.018 V. Van Huynh, N.-T. Le, N. Saha, M.Z. Chowdhury, Y.M. Jang, Inter-cell interference mitigation using soft frequency reuse with two FOVs in visible light communication, in: Proc. Int. Conf. ICT Convergence, 2012, pp. 141–144. Chen, 2017, Coalition formation for interference management in visible light communication networks, IEEE Trans. Veh. Technol., PP Novlan, 2011, Analytical evaluation of fractional frequency reuse for ofdma cellular networks, IEEE Trans. Wirel. Commun., 10, 4294, 10.1109/TWC.2011.100611.110181 T. Novlan, J.G. Andrews, I. Sohn, R.K. Ganti, A. Ghosh, Comparison of fractional frequency reuse approaches in the ofdma cellular downlink, in: Proc. IEEE Global Telecommun. Conf., 2010, pp. 1–5. A.A. Dowhuszko, A.I. Pérez-Neira, Achievable data rate of coordinated multi-point transmission for visible light communications, in: Proc. IEEE PIMRC, 2017, pp. 1–7. Ma, 2015, Coordinated broadcasting for multiuser indoor visible light communication systems, IEEE Trans. Commun., 63, 3313, 10.1109/TCOMM.2015.2452254 Kizilirmak, 2017, Centralized light access network (C-LiAN): a novel paradigm for next generation indoor VLC networks, IEEE Access, 5, 19703, 10.1109/ACCESS.2017.2752208 M. Hammouda, J. Peissig, A. Vegni, Design of a cognitive VLC network with illumination and handover requirements, in: Proc. IEEE International Conference on Communications, ICC, 2017, p. 6. H. Elgala, R. Mesleh, H. Haas, Practical considerations for indoor wireless optical system implementation using OFDM, in: Proc. IEEE Inter. Conf. Telecommu., ConTEL, 2009, pp. 25–29. J. Fakidis, D. Tsonev, H. Haas, A comparison between DCO-OFDMA and synchronous one-dimensional OCDMA for optical wireless communications, in: Proc. PIMRC, 2013, pp. 3605–3609. S. Shao, A. Khreishah, M.B. Rahaim, H. Elgala, M. Ayyash, T.D. Little, J. Wu, An indoor hybrid WiFi-VLC internet access system, in: Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS), 2014, pp. 569–574. Bao, 2014, Protocol design and capacity analysis in hybrid network of visible light communication and ofdma systems, IEEE Trans. Veh. Technol., 63, 1770, 10.1109/TVT.2013.2286264 Fabini, 2008, Location-based assisted handover for the IP Multimedia Subsystem, Comput. Commun., 31, 2367, 10.1016/j.comcom.2008.02.021 L. Wisniewski, H. Trsek, I. Dominguez-Jaimes, A. Nagy, R. Exel, N. Kerö, Location-based handover in cellular IEEE 802.11 networks for Factory Automation, in: Proc. IEEE Conf. on Emerging Technologies and Factory Automation, ETFA, 2010, pp. 1–8. X. Li, R. Zhang, L. Hanzo, Cooperative load balancing in hybrid visible light communications and WiFi, 63 (4) (2015) 1319–1329. Y. Wang, H. Haas, Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks, 33 (22) (2015) 4671–4682. Hamamatsu, 46-element Si photodiode array for UV to NIR, https://www.hamamatsu.com/jp/en/product/category/3100/4001/4204/4105/S4114-46Q/index.html. (Accessed June 2017). V. Jungnickel, et al. A european view on the next generation optical wireless communication standard, in: Standards for Communications and Networking (CSCN), 2015 IEEE Conference on, 2015, pp. 106–111. Chaaban, 2016, Fundamental limits of parallel optical wireless channels: Capacity results and outage formulation, IEEE Trans. Commun., 10.1109/TCOMM.2016.2621743 Lapidoth, 2009, On the capacity of free-space optical intensity channels, IEEE Trans. Inform. Theory, 55, 4449, 10.1109/TIT.2009.2027522 M. Rahaim, T. Little, SINR analysis and cell zooming with constant illumination for indoor VLC networks, in: Proc. IEEE Int. Workshop Opt. Wireless Commun., IWOW, 2013, pp. 20–24. S. Pergoloni, M. Biagi, S. Colonnese, R. Cusani, G. Scarano, Coverage optimization of 5G atto-cells for visible light communications access, in: Proc. IEEE Int. Workshop Measurements Netw., M&N, 2015, pp. 1–5. Ghaffar, 2010, Fractional frequency reuse and interference suppression for OFDMA networks, 273 J.R. Barry, J.M. Kahn, W.J. Krause, E. Lee, D.G. Messerschmitt, et al. Simulation of multipath impulse response for indoor wireless optical channels, 11 (3) (1993) 367–379. J. Grubor, S. Randel, K.-D. Langer, J.W. Walewski, Broadband information broadcasting using LED-based interior lighting, 26 (24) (2008) 3883–3892. European Standard EN 12464-1, “Lighting of Indoor Work Places”, Jan. 2009. Zhang, 2016, Energy efficient visible light communications relying on amorphous cells, IEEE J. Sel. Areas Commun., 34, 894, 10.1109/JSAC.2016.2544598 I. Stefan, H. Burchardt, H. Haas, Area spectral efficiency performance comparison between vlc and RF femtocell networks, in: Proc. IEEE Int. Conf. Commun., ICC, 2013, pp. 3825–3829. Gonzlez, 2014, Multi-User visible light communications OBrien, 2005, Short-range optical wireless communications, 1 M.-S. Alouini, A.J. Goldsmith, Area spectral efficiency of cellular mobile radio systems, 48 (4) (1999) 1047–1066. Tse, 2005 M.B. Rahaim, T. Borogovac, J.B. Carruthers, CandlES: communication and lighting emulation software, in: Proc. 5th ACM Int. Workshop on Wireless Netw. Testbeds, Experimental Evaluation and Characterization, 2010, pp. 9–14.