Resource-Efficient Manufacturing Technology for Titanium Aluminide Aerospace Components

Matthias Bünck1, Roland Salber1, Todor Stoyanov
1ACCESS e.V., Aachen, Germany

Tóm tắt

AbstractTitanium aluminide (TiAl) has been identified as a key material for achieving significant emission reductions in aircraft jet engines due to its high-temperature properties combined with its very low weight compared with conventional nickel-based alloys. Well-known engine manufacturers, therefore, introduced TiAl low-pressure turbine blades in their engines. To enter the market, all manufacturers initially relied on enormous machining allowances for safety reasons, thus accepting a poor buy-to-fly ratio: MTU Aero Engines AG used the casting/forging route with the alloy TNM [Ti–43.5Al–4Nb–1Mo–0.1B (at.-%)] for the highly stressed GTF (geared turbofan), Safran used machining of the alloy GE48-2-2 (Ti–33Al–2.6Cr–4.8Nb (wt.-%)) from the solid, and GE (General Electric) used ‘massive-overstock’ investment casting and 3D printing of GE48-2-2. More cost-effective and material-efficient processes are needed for titanium aluminide to establish itself sustainably in new aerospace applications in the long term. Access has, therefore, developed an economical TiAl investment casting process to industrial maturity, realizing a minimum machining allowance of 0.7 mm in a process-safe manner. In a study, it was evaluated that carbide cutters with AlTiN coating are excellently suited for machining TiAl. Extensive studies of the economic viability of TiAl investment casting have shown that it is competitive.

Từ khóa


Tài liệu tham khảo

Aguilar J, Schievenbusch A, Kättlitz O (2011) Investment casting technology for production of TiAl low pressure turbine blades – Process engineering and parameter analysis: 3rd IRC International Workshop 13–14 May 2010. Intermetallics 19(6):757–761

Aspinwall DK, Dewes RC, Mantle AL (2005) The machining of i-TiAI intermetallic alloys. CIRP Ann Manuf Technol 54:99–104

Beranoagirre A, Olvera D and Lo´ pez De Lacalle LN. Milling of gamma titanium-aluminum alloys. Int J Adv Manuf Technol 2012; 62: 83–88.

Bewlay BP, Nag A, Suzuki A, Weimer MJ (2016) TiAl alloys in commercial aircraft engines. Mater High Tempertures 33(4):1–11. https://doi.org/10.1080/09603409.2016.1183068

Bünck M, Stoyanov T, Schievenbusch J, Michels H, Gußfeld A (2017) Titanium Aluminide Casting Technol Dev JOM 69:2565–2570

Busse P, Permanentkokillenguss-Prozess für TiAl-Ventile, Grafische Betriebe—Forschungszentrum Jülich GmbH, S. 53–56 (2003)

Busse P, TiAl-Bauteile an der Schwelle zum Einsatz—Bau einer Pilotanlage zur Massenfertigung von TiAl-Motorventilen, Grafische Betriebe—Forschungszentrum Jülich GmbH, S. 96–100 (2003)

Castellanos SD, Cavaleiro AJ, de Jesus AMP, Neto R, Lino Alves J (2019) Machinability of titanium aluminides. J Mater 233(3):426–451

Dimiduk DM (1999) Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials. Mater Sci Eng A 263:281–288

Donachie MJ. Titanium: a technical guide. Materials Park, OH: ASM International, 2000.

Ence E, Margolin H (1954) Phases in titanium alloys identified by cumulative etching. JOM 6:346–348

Final Report Summary, DATACAST—Development of a low cost Advanced gamma Titanium Aluminide Casting Technology (2016), http://cordis.europa.eu/result/rcn/178111_en.html, Accessed 6 June 2022

Ge YF, Fu YC, Xu JH (2007) Experimental study on high speed milling of i-TiAl alloy. Key Eng Mater 339:6–10

GE, Additive at Scale: Avio Aero Flies into the Future, https://www.ge.com/additive/stories/additive-at-scale-avio-aero, Accessed 6 June 2022

Habel U, Heutling F, Kunze C, Smarsly W, Das G, Clemens H, Forged Intermetallic γ-TiAl Based Alloy Low Pressure Turbine Blade in the Geared Turbofan, Proceedings of the 13th World Conference on Titanium, Chapter 208 (2016). https://doi.org/10.1002/9781119296126.ch208

Hendrikxson S, Machining Titanium Aluminide at AeroEdge (2018), https://www.mmsonline.com/articles/machining-titanium-aluminide-at-aeroedge, Accessed 6 June 2022.

Hilleringmann M, Schievenbusch J, Zapala P, Bünck M, Microstructure and mechanical properties of TNM titanium aluminide alloy after heat treatment and different cooling conditions, Intermetallics Bad Staffelstein, O-TA-14, pp. 86–87, ISBN 978-3-948023-17-11 (2021)

Kahles JF, Field M, Eylon D et al (1985) Machining of titanium alloys. JOM 37:27–35

Kättlitz O, Development of an investment casting technology for manufacturing of near-net shape titanium aluminide low pressure turbine blades, Ergebnisse aus Forschung und Entwicklung, Band 15, Gießerei-Institut der RWTH Aachen, 978-3-944601-04-5 (2014)

Klocke F, Lung D, Arft M et al (2013) On high-speed turning of a third-generation gamma titanium aluminide. Int J Adv Manuf Technol 65:155–163

Leconte G, Franchet J-M, Sallot P, Method for manufacturing a TiAl Blade of a Turbine Engine, Patent, Safran Aircraft Engines, CA2986788A1 (2016)

Niedermeyer A, Vollmer T, Schmitt R, Bünck M, Keeping those blades turning, Aerospace Manufacturing (2018), https://www.aero-mag.com/tial-turbine-blades-material-efficient-serial-production. Accessed 6 June 2022.

Nowak T, Rolls-Royce legt beim Supertriebwerk Denkpause ein, Aero Telegraph, https://www.aerotelegraph.com/ultrafan-rolls-royce-legt-beim-supertriebwerk-denkpause-ein (2021), Accessed 6 June 2022

Raab I, Artmeier M, Wilfert G, Technologieerprobung für schnelllaufende Niederdruckturbinen für wirtschaftliche und umweltschonende Triebwerke, Vortrag DGLR-Jahrestagung (2000)

Sharman ARC, Aspinwall DK, Dewes RC et al (2001) Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear 249:473–481

Stoyanov T, Beitrag zur qualitätssicheren und wirtschaftlichen Fertigung von near-net-shape Turbinenschaufeln aus Titanaluminid, ISBN: 978-3-944601-19-9, https://doi.org/10.18154/RWTH-2021-09805, Druckausgabe: 2021

Stoyanov T, Bünck M, Aguilar J, Schievenbusch A, Challenges and opportunities by setting-up a TiAl investment casting technology to reach TRL6. In: 5th International Workshop on Titanium Aluminides, Tokio (2016)

Witusiewicz V, Bondar A, Hecht U, Rex S, Velikanova T (2008) The Al–B–Nb–Ti system. J Alloy Compd 465(1–2):64–77